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Helical Phases

Helical Phase: A phase in which the Euclidean symmetry is  
spontaneously broken into something called helical symmetry.

x1 Euclidean symmetry: Invariance under @
x1 , @x2 , @x3

Helical symmetry: Invariance under @
x1 � k(x2@x3 � x3@x2), @x2 , @x3

x1
x1
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Superconductors
QCD @ high 

baryon density

AdS/CFT predicts cases in field theory with broken 
Euclidean symmetry (Spatially Modulated Phases)

[Ooguri et.al 2010]
[Donos, Gauntlett ‘12]

Stability of black holes is essential
[Gregory, Laflamme; Wald; Cvetic et.al; Gubser; Ferrara, Kallosh et.al; … ]

1) Stability of Reissner-Nordström black hole (RNBH) in (super)gravity w.r.t helical 
perturbations. 

2)  We analyse the stability criteria in presence of higher derivative corrections (h.d.c’s).



Overview

1. Stability of black holes in the Einstein-Maxwell Chern-
Simons theory in 5 dimensions w.r.t. helical phases 

2. Higher derivative corrections and stability analysis 

3. Overview of results 

4. Outlook and further directions of research
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Step 1: Add “fluctuations Q(r) and b(r) & helical terms” to homogeneous solution

Near horizon part of extremal RN black hole:

ds

2 =
�dt

2 + dr
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2

A =
E

12r
dt

helical symmetry!2 = cos (kx1)dx2 � sin (kx2)dx3
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Instability in EMCS

Step 2: Find EOM for Q(r), b(r) & find the mass as a function of ↵



Instability in EMCS

m2BF =
�1
4r2
= �3Breitenlohner-Freedman bound:

AdS2

Step 3:
Find smallest value of ↵ for which m2

Q(r)(↵) = m2
b(r)(↵) < m2

BF

Step 2: Find EOM for Q(r), b(r) & find the mass as a function of ↵



Instability in EMCS
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[Ooguri et.al 2010]

↵s
↵c

⇡ 0.997

Instability if ↵ > ↵c = 0.2896
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Q(r)(↵) = m2
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BF

Step 2: Find EOM for Q(r), b(r) & find the mass as a function of ↵
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Higher derivative corrections
The supersymmetric value of CS coupling just above the critical value.

Can RNBH solutions be unstable in supersymmetric theories?

How does criticality change for higher derivative correction?

Compute corrections to mBF, A1) [Myers, Sinha et. al ‘09]

2) Repeat analysis: Make ansatz, find E’sOM, obtain mass of perturbation. 

3) Find critical values of    , ci for which m2 < mBF
2
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where

and c,a are the central charges of the dual N = 1 SCFT.
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c2 = �c1
2
, c3 =

c1
24

, c4 = �5c1
24

, c5 =
c1
2
p
3

Q: How do the ci affect the critical and supersymmetric CS coupling?

↵c = ↵(0)
c � 14.16c1 ↵s =

1� 288c1
2
p
3

With h.d.c’s for EMCS with the “supersymmetric c’s” relation

↵(0)
c = critical value of EMCS theory



Critical coupling corrections
↵

c1
c1 corrections to and↵s ↵c



Critical coupling corrections
↵

c1
c1 corrections to and↵s ↵c

c1 =
1

8

c � a

c
= �1.3⇥ 10�5

If c1 > -1.3 x 10-5, the RNBH in N = 2 minimal gauged SUGRA 
is stable w.r.t helical phases.
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Our analysis shows that there exist stable black hole solutions under h.d.c’s 
which do not satisfy this shear-entropy bound. 

This supports the need to modify this bound.
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Review & Key results

1. RNBH solutions in EMCS theory is be unstable to helical phases when CS 
coupling is greater than the critical coupling. 

2. RNBH solutions in supersymmetric theories are barely stable. Add higher 
derivative terms to analyse critical and supersymmetric CS couplings. 

3. For N = 2 minimal gauged SUGRA, we see that the RNBH solutions are 
stable if (c-a)     c1 > -1.3 x 10-5. 

4. Most of these solutions do not obey the shear-entropy “bound”. This 
violation is expected in theories with h.d.c’s. This provides more reason to 
suggest that the bound must be corrected.

/



Further Developments and Outlook

1. Extend results to include full BH geometry (work in progress) 

2. We have performed a linear analysis in order by order expansion of the 
CS coupling and expect our final results to be analytically computable 
in the limit that           . 

3. We would like to describe the endpoint of the phase transition including 
higher derivative corrections, similar to 

4. Further analysis into (c-a): Is it possible to have c < a i.e. c1 < 0 in 
interacting Lagrangian theories?

[Ooguri, Park ’10].

↵ ! 1

[Maldacena, Hofmann ‘08]



Thank you for your attention!



↵c

c5

c5 decreases the critical CS coupling

There could non-supersymmetric 
solutions for which 

there are no stable helical BH solutions 

Generic conditions on stability
Corrections to the BF bound: m2BF = �(3� 144c2 � 576c3 � 288c4)

Corrections to A: A =
 
2
p
6

12r
� 4

p
6

r
(c1 + 2c2 + 4c3 + 2c4)

!

↵c = ↵(0)
c + 11.82c1 + 37.06c2 + 183.67c3 + 55.01c4 � 12.61c5
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c1,..,4 corrections increase the critical Chern-Simons coupling

Generic conditions on stability



Why extremal RN black holes?

1.0 1.5 2.0 2.5 3.0
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T

k

Unstable solutions

↵ = 0.425

Once Tc is reached, BH undergoes a phase transition 
and settles down to an extremal, helical BH with some 

particular value of k.

Study black hole thermodynamics to find out that value of k.



Corrections with c1
T T

With and without c1 correction



More on CS, N = 2 SUGRA and SCFT

[Gauntlett, Varela ‘07]

To get c and a

Tm
m =

c
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