$D=5$ Helical black holes

Stability analysis and higher derivative corrections

Abhiram Mamandur Kidambi

Max Planck Institute for Physics \& ASC - LMU Munich

33 ${ }^{\text {rd }}$ IMPRS Workshop - Max Planck Institute for Physics

In collaboration with

Michael Haack (ASC-LMU Munich)

Amos Yarom
(Technion, Haifa)

Daniel Brattan
(Technion, Haifa)

Helical Phases

Helical Phase: A phase in which the Euclidean symmetry is spontaneously broken into something called helical symmetry.

$$
\text { Euclidean symmetry: Invariance under } \partial_{x_{1}}, \partial_{x_{2}}, \partial_{x_{3}}
$$

Helical symmetry: Invariance under $\partial_{x_{1}}-k\left(x_{2} \partial_{x_{3}}-x_{3} \partial_{x_{2}}\right), \partial_{x_{2}}, \partial_{x_{3}}$

What is gauge/gravity duality?

| String theory / Gravity |
| :---: | :---: | :---: |
| at weak coupling and |
| low curvature in D dim |\longleftrightarrow| Strongly coupled |
| :---: |
| (conformal) QFT |
| in D-1 dim |\quad| [Maldacena '97] |
| :---: |
| [Polyakov et.al '98] |
| [Witten '98] |

The original $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ conjecture
Type IIB supergravity on $\mathrm{AdS}_{5} \times \mathrm{S}_{5} \longleftrightarrow \mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ SYM in $\mathrm{d}=4$

What is gauge/gravity duality?

String theory/ Gravity at weak coupling and low curvature in D dim	\longleftrightarrowStrongly coupled (conformal) QFT in D-1 dim

[Maldacena '97] [Polyakov et.al '98] [Kitten '98]

The original $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ conjecture
Type IIB supergravity on $\mathrm{AdS}_{5} \times \mathrm{S}_{5} \longleftrightarrow \mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ SYM in $d=4$

For this talk

Gravity (D dim)
Black hole solution

Gauge theory (D-1 dim)

Finite temperature field theory

What is gauge/gravity duality?

```
String theory/ Gravity
at weak coupling and
low curvature in D dim
```

Strongly coupled (conformal) QFT in D-1 dim
[Maldacena '97] [Polyakov et.al '98] [Witter '98]

The original $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ conjecture
Type IIB supergravity on $\mathrm{AdS}_{5} \times \mathrm{S}_{5} \longleftrightarrow \mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ SYM in $d=4$

For this talk

Gravity (D dim)
Gauge theory (D-1 dim)

Black hole solution Electrically charged solution

Finite temperature field theory
Non-zero chemical potential

What is gauge/gravity duality?

```
String theory/ Gravity
at weak coupling and
low curvature in D dim
```

Strongly coupled (conformal) QFT in D-1 dim
[Maldacena '97] [Polyakov et.al '98] [Witten '98]

The original $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ conjecture
Type IIB supergravity on $\mathrm{AdS}_{5} \times \mathrm{S}_{5} \longleftrightarrow \mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ SYM in $d=4$

For this talk

Gravity (D dim)
Black hole solution Electrically charged solution Instability of black hole solution

Gauge theory (D-1 dim)
Finite temperature field theory
Non-zero chemical potential
Phase transition

Motivation

AdS/CFT predicts cases in field theory with broken Euclidean symmetry (Spatially Modulated Phases)
[Erdmenger et.al; Ooguri et.al; Gauntlett et.al, Fukushima; Hartnoll; Kiritsis et.al...]

Superconductors

QCD @ high
baryon density

Motivation

AdS/CFT predicts cases in field theory with broken Euclidean symmetry (Spatially Modulated Phases)
[Erdmenger et.al; Ooguri et.al; Gauntlett et.al, Fukushima; Hartnoll; Kiritsis et.al...]

Superconductors

QCD @ high
baryon density

Exist exotic black hole solutions in supergravity (SUGRA) dual to QFT's

> with broken Euclidean symmetry. [Ooguri et.al 2010]
> [Donos, Gauntlett '12]

Stability of black holes is essential

[Gregory, Laflamme; Wald; Cvetic et.al; Gubser; Ferrara, Kallosh et.al; ...]

Motivation

AdS/CFT predicts cases in field theory with broken Euclidean symmetry (Spatially Modulated Phases)
[Erdmenger et.al; Ooguri et.al; Gauntlett et.al, Fukushima; Hartnoll; Kiritsis et.al...]

Superconductors

QCD © high
baryon density

Exist exotic black hole solutions in supergravity (SUGRA) dual to QFT's with broken Euclidean symmetry.
[Doguri et.al 2010]
[Donos, Gauntlett '12]
Stability of black holes is essential
[Gregory, Laflamme; Wald; Cvetic et.al; Gubser; Ferrara, Kallosh et.al; ...]

1) Stability of Reissner-Nordström black hole (RNBH) in (super)gravity w.r.t helical perturbations.
2) We analyse the stability criteria in presence of higher derivative corrections (h.d.c's).

Overview

1. Stability of black holes in the Einstein-Maxwell ChernSimons theory in 5 dimensions w.r.t. helical phases
2. Higher derivative corrections and stability analysis
3. Overview of results
4. Outlook and further directions of research

Einstein-Maxwell Chern-Simons (EMCS) Theory in D $=5$

$$
\begin{gathered}
S_{E M C S}=\underbrace{\int d^{5} x \sqrt{-g}\left((R+12)-\frac{F^{a b} F_{a b}}{4}\right)}_{\text {Einstein-Maxwell }}-\underbrace{\frac{2}{3} \alpha \int F \wedge F \wedge A}_{\text {Chern-Simons }} \\
\text { If } \alpha=\alpha_{s}=\frac{1}{2 \sqrt{3}} \approx 0.2886 \longrightarrow \quad \begin{array}{c}
N=2 \text { minimal gauged } \\
\text { supergravity. }
\end{array}
\end{gathered}
$$

Einstein-Maxwell Chern-Simons (EMCS) Theory in D $=5$

$$
\begin{aligned}
& S_{E M C S}=\underbrace{\int d^{5} x \sqrt{-g}\left((R+12)-\frac{F^{a b} F_{a b}}{4}\right)}_{\text {Einstein-Maxwell }}-\underbrace{\frac{2}{3} \alpha \int F \wedge F \wedge A}_{\text {Chern-Simons }} \\
& \text { If } \alpha=\alpha_{s}=\frac{1}{2 \sqrt{3}} \approx 0.2886 \longrightarrow \quad \begin{array}{c}
N=2 \text { minimal gauged } \\
\text { supergravity. }
\end{array}
\end{aligned}
$$

Einstein-Maxwell Chern-Simons (EMCS) Theory in D $=5$

$$
\begin{aligned}
& S_{E M C S}=\underbrace{\int d^{5} \times \sqrt{-g}\left((R+12)-\frac{F^{a b} F_{a b}}{4}\right)}_{\text {Einstein-Maxwell }}-\underbrace{\frac{2}{3} \alpha \int F \wedge F \wedge A}_{\text {Chern-Simons }} \\
& \text { If } \alpha=\alpha_{s}=\frac{1}{2 \sqrt{3}} \approx 0.2886 \longrightarrow \quad \begin{array}{c}
N=2 \text { minimal gauged } \\
\text { supergravity. }
\end{array}
\end{aligned}
$$

Step 1: Add "fluctuations $Q(r)$ and $b(r) \&$ helical terms" to homogeneous solution
Near horizon part of extremal RN black hole:

$$
\begin{aligned}
& d s^{2}=\frac{-d t^{2}+d r^{2}}{12 r^{2}}+d x^{2} \\
& A=\frac{E}{12 r} d t
\end{aligned}
$$

Einstein-Maxwell Chern-Simons (EMCS) Theory in D $=5$

$$
\begin{aligned}
& S_{E M C S}=\underbrace{\int d^{5} x \sqrt{-g}\left((R+12)-\frac{F^{a b} F_{a b}}{4}\right)}_{\text {Einstein-Maxwell }}-\underbrace{\frac{2}{3} \alpha \int F \wedge F \wedge A}_{\text {Chern-Simons }} \\
& \text { If } \alpha=\alpha_{s}=\frac{1}{2 \sqrt{3}} \approx 0.2886 \longrightarrow \quad \begin{array}{c}
N=2 \text { minimal gauged } \\
\text { supergravity. }
\end{array}
\end{aligned}
$$

Step 1: Add "fluctuations $Q(r)$ and $b(r) \&$ helical terms" to homogeneous solution Near horizon part of extremal RN black hole:

$$
\begin{aligned}
& d s^{2}=\frac{-d t^{2}+d r^{2}}{12 r^{2}}+d x^{2}+Q(r) d t^{2}+2 Q(r) \omega_{2} d t \\
& A=\frac{E}{12 r} d t+b(r) \omega_{2}
\end{aligned}
$$

$$
\omega_{2}=\cos \left(k x_{1}\right) d x_{2}-\sin \left(k x_{2}\right) d x_{3} \longrightarrow \text { helical symmetry }
$$

Instability in EMCS

Step 2: Find EOM for $Q(r), b(r) \&$ find the mass as a function of α

Instability in EMCS

Step 2: Find EOM for $Q(r), b(r) \&$ find the mass as a function of α
Step 3: Find smallest value of α for which $m_{Q(r)}^{2}(\alpha)=m_{b(r)}^{2}(\alpha)<m_{B F}^{2}$ Breitenlohner-Freedman bound: $\quad m_{B F}^{2}=\frac{-1}{4 r_{A d S_{2}}^{2}}=-3$

Instability in EMCS

Step 2: Find EOM for $Q(r), b(r) \&$ find the mass as a function of α
Step 3: Find smallest value of α for which $m_{Q(r)}^{2}(\alpha)=m_{b(r)}^{2}(\alpha)<m_{B F}^{2}$ Breitenlohner-Freedman bound: $\quad m_{B F}^{2}=\frac{-1}{4 r_{A d S_{2}}^{2}}=-3$

$$
\frac{\alpha_{s}}{\alpha_{c}} \approx 0.997
$$

Instability if $\alpha>\alpha_{c}=0.2896$

Higher derivative corrections

The supersymmetric value of CS coupling just above the critical value.
Can RNBH solutions be unstable in supersymmetric theories?

Higher derivative corrections

The supersymmetric value of CS coupling just above the critical value.
Can RNBH solutions be unstable in supersymmetric theories?

Add higher derivative corrections [Myers, Sinha et. al '09]

$$
\begin{aligned}
& S=S_{E M C S}+c_{1}\left(R_{a b c d} R^{a b c d}\right)+c_{2}\left(R_{a b c d} F^{a b} F^{c d}\right)+c_{3}\left(F_{a b} F^{a b}\right)^{2} \\
&+c_{4}\left(F_{b}^{a} F_{c}^{b} F_{d}^{c} F_{a}^{d}\right)+c_{5} \epsilon^{a b c d e} A_{a} R_{b c f g} R_{d e}^{f g}+\cdots \\
& \quad c_{i} \ll 1, \quad i=1, \cdots, 5
\end{aligned}
$$

Higher derivative corrections

The supersymmetric value of CS coupling just above the critical value.
Can RNBH solutions be unstable in supersymmetric theories?

Add higher derivative corrections [Myers, Sinha et. al '09]

$$
\begin{aligned}
S & =S_{E M C S}+c_{1}\left(R_{a b c d} R^{a b c d}\right)+c_{2}\left(R_{a b c d} F^{a b} F^{c d}\right)+c_{3}\left(F_{a b} F^{a b}\right)^{2} \\
& +c_{4}\left(F_{b}^{a} F_{c}^{b} F_{d}^{c} F_{a}^{d}\right)+c_{5} \epsilon^{a b c d e} A_{a} R_{b c f g} R_{d e}^{f g}+\cdots \quad c_{i} \ll 1, i=1, \cdots, 5
\end{aligned}
$$

How does criticality change for higher derivative correction?

1) Compute corrections to mbF, A [Myers, Sinha et. al '09]
2) Repeat analysis: Make ansatz, find E 'sOM, obtain mass of perturbation.
3) Find critical values of α, c_{i} for which $m^{2}<m_{B F}{ }^{2}$.

Stability Analysis \& Results

We still $N=2$ minimal SUGRA
"The supersymmetric c_{i} 's"
$c_{2}=-\frac{c_{1}}{2}, c_{3}=\frac{c_{1}}{24}, c_{4}=-\frac{5 c_{1}}{24}, c_{5}=\frac{c_{1}}{2 \sqrt{3}}$ where $\quad c_{1}=\frac{1}{8} \frac{c-a}{c}$
and $\boldsymbol{c}, \boldsymbol{a}$ are the central charges of the dual $\mathbf{N}=1 \mathrm{SCFT}$.

Stability Analysis \& Results

We still $\mathrm{N}=2$ minimal SUGRA

"The supersymmetric c_{i} 's"

$$
c_{2}=-\frac{c_{1}}{2}, c_{3}=\frac{c_{1}}{24}, c_{4}=-\frac{5 c_{1}}{24}, c_{5}=\frac{c_{1}}{2 \sqrt{3}} \quad \text { where } \quad c_{1}=\frac{1}{8} \frac{c-a}{c}
$$

and c, a are the central charges of the dual $N=1$ SCFT.
[Myers, Sinha et. al '09]

Q: How do the c_{i} affect the critical and supersymmetric CS coupling?

With h.d.c's for EMCS with the "supersymmetric c's" relation

$$
\alpha_{c}=\alpha_{c}^{(0)}-14.16 c_{1}
$$

$$
\alpha_{s}=\frac{1-288 c_{1}}{2 \sqrt{3}}
$$

$\alpha_{c}^{(0)}=$ critical value of EMCS theory

Critical coupling corrections

$$
\alpha_{s}=\alpha_{s}^{(0)}\left(1-288 c_{1}\right)
$$

Critical coupling corrections

$$
\alpha_{s}=\alpha_{s}^{(0)}\left(1-288 c_{1}\right)
$$

If $c_{1}>-1.3 \times 10^{-5}$, the RNBH in $N=2$ minimal gauged SUGRA is stable w.r.t helical phases.

Comment on (c-a)

AdS/CFT has been used to conjecture the ratio of shear to entropy for theories with a gravity dual.

$$
\frac{\eta}{s} \geq \frac{1}{4 \pi}
$$

[Starinets, Son, Policastro, Buchel, Liu, Myers, Sinha...]

Comment on (c-a)

AdS/CFT has been used to conjecture the ratio of shear to entropy for theories with a gravity dual.

$$
\frac{\eta}{s} \geq \frac{1}{4 \pi}
$$

[Starinets, Son, Policastro, Buchel, Liu, Myers, Sinha...]

$$
\frac{\eta}{s}=\frac{1}{4 \pi}\left(1-\frac{c-a}{c}\right)=\frac{1}{4 \pi}\left(1-8 c_{1}\right) \text { if } c_{1}>0
$$

Normal theories (Lagrangian theories in the large N limit) have $c>a$ and therefore do not satisfy this bound. (Ex: Large $\mathrm{N} S U(N), S p(N)$ theories)
[Shenker, Myers et.al '07], [Buchel, Myers, Sinha '12]

Comment on (c-a)

AdS/CFT has been used to conjecture the ratio of shear to entropy for theories with a gravity dual.

$$
\frac{\eta}{s} \geq \frac{1}{4 \pi}
$$

[Starinets, Son, Policastro, Buchel, Liu, Myers, Sinha...]

$$
\frac{\eta}{s}=\frac{1}{4 \pi}\left(1-\frac{c-a}{c}\right)=\frac{1}{4 \pi}\left(1-8 c_{1}\right) \text { if } c_{1}>0
$$

Normal theories (Lagrangian theories in the large N limit) have $c>a$ and therefore do not satisfy this bound. (Ex: Large $\mathrm{N} S U(N), S p(N)$ theories)
[Shenker, Myers et.al '07], [Buchel, Myers, Sinha '12]

Our analysis shows that there exist stable black hole solutions under h.d.c's which do not satisfy this shear-entropy bound.

This supports the need to modify this bound.

Review \& Key results

1. RNBH solutions in EMCS theory is be unstable to helical phases when CS coupling is greater than the critical coupling.
2. RNBH solutions in supersymmetric theories are barely stable. Add higher derivative terms to analyse critical and supersymmetric CS couplings.
3. For $\mathbf{N}=\mathbf{2}$ minimal gauged SUGRA, we see that the RNBH solutions are stable if $(c-a) \propto c_{1}>-1.3 \times 10^{-5}$.
4. Most of these solutions do not obey the shear-entropy "bound". This violation is expected in theories with h.d.c's. This provides more reason to suggest that the bound must be corrected.

Further Developments and Outlook

1. Extend results to include full BH geometry (work in progress)
2. We have performed a linear analysis in order by order expansion of the CS coupling and expect our final results to be analytically computable in the limit that $\alpha \rightarrow \infty$.
3. We would like to describe the endpoint of the phase transition including higher derivative corrections, similar to [Ooguri, Park '10].
4. Further analysis into ($c-a$): Is it possible to have $c<a$ i.e. $c_{1}<0$ in interacting Lagrangian theories? [Maldacena, Hofmann '08]

Thank you for your attention!

Generic conditions on stability

Corrections to the BF bound: $\quad m_{B F}^{2}=-\left(3-144 c_{2}-576 c_{3}-288 c_{4}\right)$

$$
\begin{array}{r}
\text { Corrections to } \mathrm{A}: \quad A=\left(\frac{2 \sqrt{6}}{12 r}-\frac{4 \sqrt{6}}{r}\left(c_{1}+2 c_{2}+4 c_{3}+2 c_{4}\right)\right) \\
\alpha_{c}=\alpha_{c}^{(0)}+11.82 c_{1}+37.06 c_{2}+183.67 c_{3}+55.01 c_{4}-12.61 c_{5}
\end{array}
$$

There could non-supersymmetric solutions for which there are no stable helical BH solutions

C5 decreases the critical CS coupling

Generic conditions on stability

$\mathrm{c}_{1, \ldots, 4}$ corrections increase the critical Chern-Simons coupling

Why extremal RN black holes?

Study black hole thermodynamics to find out that value of k.

Corrections with \mathbf{c}_{1}

With and without c_{1} correction

More on CS, $N=2$ SUGRA and SCFT

> For any supersymmetric solution of $D=10$ or $D=11$ supergravity that consists of a warped product of $d+1$ dimensional anti-de-Sitter space with a Riemannian manifold $M, A d S_{d+1} \times_{w} M$, there is a consistent Kaluza-Klein truncation on M to a gauged supergravity theory in $d+1$ dimensions for which the fields are dual to those in the superconformal current multiplet of the d-dimensional dual SCFT.
[Gauntlett, Varela '07]

To get c and a

$$
T_{m}^{m}=\frac{c}{16 \pi^{2}} \underbrace{W^{a b c d}}_{\text {Weyl Tensor }} W_{a b c d}-\frac{a}{16 \pi^{2}} \underbrace{\left(R^{a b c d} R_{a b c d}-4 R^{a b} R_{a b}+R^{2}\right)}_{\text {4D Euler Density }}
$$

