D=5 Helical black holes Stability analysis and higher derivative corrections

Abhiram Mamandur Kidambi

Max Planck Institute for Physics & ASC - LMU Munich

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

33rd IMPRS Workshop - Max Planck Institute for Physics

In collaboration with

Michael Haack (ASC-LMU Munich)

Amos Yarom (Technion, Haifa)

Daniel Brattan (Technion, Haifa)

arXiv:1511.****

Helical Phases

Helical Phase: A phase in which the **Euclidean symmetry is spontaneously broken into something called helical symmetry**.

 x_1

Euclidean symmetry: Invariance under ∂_{x_1} , ∂_{x_2} , ∂_{x_3}

Helical symmetry: Invariance under $\partial_{x_1} - k(x_2\partial_{x_3} - x_3\partial_{x_2}), \partial_{x_2}, \partial_{x_3}$

[Maldacena '97] [Polyakov et.al '98] [Witten '98]

The original AdS_5/CFT_4 conjecture Type IIB supergravity on $AdS_5 \times S_5 \iff \mathcal{N} = 4$ SU(N) SYM in d = 4

[Maldacena '97] [Polyakov et.al '98] [Witten '98]

The original AdS_5/CFT_4 conjecture Type IIB supergravity on $AdS_5 \times S_5 \iff \mathcal{N} = 4$ SU(N) SYM in d = 4

Motivation

AdS/CFT predicts cases in field theory with broken Euclidean symmetry (Spatially Modulated Phases)

[**Erdmenger** et.al; Ooguri et.al; Gauntlett et.al, Fukushima; Hartnoll; Kiritsis et.al...]

Superconductors

QCD @ high baryon density

Motivation

AdS/CFT predicts cases in field theory with broken Euclidean symmetry (Spatially Modulated Phases)

[**Erdmenger** et.al; Ooguri et.al; Gauntlett et.al, Fukushima; Hartnoll; Kiritsis et.al...]

Superconductors

QCD @ high baryon density

Exist exotic black hole solutions in supergravity (SUGRA) dual to QFT's

with broken Euclidean symmetry. [Ooguri et.al 2010] [Donos, Gauntlett '12]

Stability of black holes is essential

[Gregory, Laflamme; Wald; Cvetic et.al; Gubser; Ferrara, Kallosh et.al; ...]

Motivation

AdS/CFT predicts cases in field theory with broken Euclidean symmetry (Spatially Modulated Phases)

[**Erdmenger** et.al; Ooguri et.al; Gauntlett et.al, Fukushima; Hartnoll; Kiritsis et.al...]

Superconductors

QCD @ high baryon density

Exist exotic black hole solutions in supergravity (SUGRA) dual to QFT's

with broken Euclidean symmetry. [Ooguri et.al 2010] [Donos, Gauntlett '12]

Stability of black holes is essential

[Gregory, Laflamme; Wald; Cvetic et.al; Gubser; Ferrara, Kallosh et.al; ...]

1) Stability of **Reissner-Nordström black hole (RNBH)** in (super)gravity **w.r.t helical perturbations**.

2) We analyse the stability criteria in presence of higher derivative corrections (h.d.c's).

- 1. Stability of black holes in the Einstein-Maxwell Chern-Simons theory in 5 dimensions w.r.t. helical phases
- 2. Higher derivative corrections and stability analysis
- 3. Overview of results
- 4. Outlook and further directions of research

[Ooguri et.al 2010]

[Ooguri et.al 2010]

Step 1: Add "fluctuations Q(r) and b(r) & helical terms" to homogeneous solution

Near horizon part of extremal RN black hole:

$$ds^{2} = \frac{-dt^{2} + dr^{2}}{12r^{2}} + dx^{2}$$
$$A = \frac{E}{12r}dt$$

[Ooguri et.al 2010]

Step 1: Add "fluctuations Q(r) and b(r) & helical terms" to homogeneous solution

Near horizon part of extremal RN black hole:

$$ds^{2} = \frac{-dt^{2} + dr^{2}}{12r^{2}} + dx^{2} + Q(r)dt^{2} + 2Q(r)\omega_{2}dt$$
$$A = \frac{E}{12r}dt + b(r)\omega_{2}$$

 $\omega_2 = \cos(kx_1)dx_2 - \sin(kx_2)dx_3 \longrightarrow \text{helical symmetry}$

Instability in EMCS

Step 2: Find EOM for Q(r), b(r) & find the mass as a function of α

Instability in EMCS

Step 2: Find EOM for Q(r), b(r) & find the mass as a function of α

Step 3: Find smallest value of α for which $m_{Q(r)}^2(\alpha) = m_{b(r)}^2(\alpha) < m_{BF}^2$

Breitenlohner-Freedman bound: $m_{BF}^2 = \frac{-1}{4r^2} = -3$

Instability in EMCS

Step 2: Find EOM for Q(r), b(r) & find the mass as a function of α

Step 3: Find smallest value of α for which $m_{Q(r)}^2(\alpha) = m_{b(r)}^2(\alpha) < m_{BF}^2$

Higher derivative corrections

The supersymmetric value of CS coupling just above the critical value.

Can RNBH solutions be unstable in supersymmetric theories?

Higher derivative corrections

The supersymmetric value of CS coupling just above the critical value.

Can RNBH solutions be unstable in supersymmetric theories?

Add higher derivative corrections [Myers, Sinha et. al '09]

 $S = S_{EMCS} + c_1 \left(R_{abcd} R^{abcd} \right) + c_2 \left(R_{abcd} F^{ab} F^{cd} \right) + c_3 \left(F_{ab} F^{ab} \right)^2$ + $c_4 \left(F_b^a F_c^b F_d^c F_a^d \right) + c_5 \epsilon^{abcde} A_a R_{bcfg} R_{de}^{fg} + \cdots$ $c_i \ll 1, i = 1, \cdots, 5$

Higher derivative corrections

The supersymmetric value of CS coupling just above the critical value.

Can RNBH solutions be unstable in supersymmetric theories?

Add higher derivative corrections [Myers, Sinha et. al '09]

$$S = S_{EMCS} + c_1 \left(R_{abcd} R^{abcd} \right) + c_2 \left(R_{abcd} F^{ab} F^{cd} \right) + c_3 \left(F_{ab} F^{ab} \right)^2$$

+ $c_4 \left(F_b^a F_c^b F_d^c F_a^d \right) + c_5 \epsilon^{abcde} A_a R_{bcfg} R_{de}^{fg} + \cdots$
 $c_i \ll 1, i = 1, \cdots, 5$

How does criticality change for higher derivative correction?

- 1) Compute corrections to m_{BF}, A [Myers, Sinha et. al '09]
- 2) Repeat analysis: Make ansatz, find E'sOM, obtain mass of perturbation.
- 3) Find critical values of α , c_i for which m² < m_{BF}².

Stability Analysis & Results

We still N = 2 minimal SUGRA

"The supersymmetric c_i's"

$$c_{2} = -\frac{c_{1}}{2}, c_{3} = \frac{c_{1}}{24}, c_{4} = -\frac{5c_{1}}{24}, c_{5} = \frac{c_{1}}{2\sqrt{3}} \text{ where } c_{1} = \frac{1}{8}\frac{c-a}{c}$$

and *c*,*a* are the **central charges of the dual N = 1 SCFT**.
[Myers, Sinha et. al '09]

Stability Analysis & Results

We still N = 2 minimal SUGRA

"The supersymmetric c_i's"

$$c_2 = -\frac{c_1}{2}, c_3 = \frac{c_1}{24}, c_4 = -\frac{5c_1}{24}, c_5 = \frac{c_1}{2\sqrt{3}}$$
 where $c_1 = \frac{1}{8}\frac{c-a}{c}$
and *c,a* are the **central charges of the dual N = 1 SCFT**.

Q: How do the c_i affect the critical and supersymmetric CS coupling?

With h.d.c's for EMCS with the "supersymmetric c's" relation

$$\alpha_c = \alpha_c^{(0)} - 14.16c_1 \qquad \qquad \alpha_s = \frac{1 - 288c_1}{2\sqrt{3}}$$

$$\alpha_c^{(0)} = \text{critical value of EMCS theory}$$

Critical coupling corrections

Critical coupling corrections

is stable w.r.t helical phases.

AdS/CFT has been used to conjecture the ratio of shear to entropy for theories with a gravity dual.

[Starinets, Son, Policastro, Buchel, Liu, Myers, Sinha...]

AdS/CFT has been used to conjecture the ratio of shear to entropy for theories with a gravity dual.

[Starinets, Son, Policastro, Buchel, Liu, Myers, Sinha...]

With h.d.c's, this bound is not satisfied:

$$rac{\eta}{s} = rac{1}{4\pi} \left(1 - rac{c-a}{c}
ight) = rac{1}{4\pi} \left(1 - 8c_1
ight) ext{ if } c_1 > 0$$

Normal theories (Lagrangian theories in the large N limit) have c > a and therefore do not satisfy this bound. (Ex: Large N SU(N), Sp(N) theories)

[Shenker, Myers et.al '07], [Buchel, Myers, Sinha '12]

AdS/CFT has been used to conjecture the ratio of shear to entropy for theories with a gravity dual.

[Starinets, Son, Policastro, Buchel, Liu, Myers, Sinha...]

With h.d.c's, this bound is not satisfied:

$$rac{\eta}{s} = rac{1}{4\pi} \left(1 - rac{c-a}{c}
ight) = rac{1}{4\pi} \left(1 - 8c_1
ight) ext{ if } c_1 > 0$$

Normal theories (Lagrangian theories in the large N limit) have c > a and therefore do not satisfy this bound. (Ex: Large N SU(N), Sp(N) theories)

[Shenker, Myers et.al '07], [Buchel, Myers, Sinha '12]

Our analysis shows that there exist stable black hole solutions under h.d.c's which do not satisfy this shear-entropy bound.

This supports the need to modify this bound.

$$rac{\eta}{s} \geq rac{1}{4\pi}$$

Review & Key results

- RNBH solutions in EMCS theory is be unstable to helical phases when CS coupling is greater than the critical coupling.
- 2. **RNBH solutions in supersymmetric theories are barely stable**. Add higher derivative terms to analyse critical and supersymmetric CS couplings.
- 3. For N = 2 minimal gauged SUGRA, we see that the RNBH solutions are stable if (*c*-*a*) \propto c₁ > -1.3 x 10⁻⁵.
- 4. **Most of these solutions do not obey the shear-entropy "bound"**. This violation is expected in theories with h.d.c's. This provides more reason to suggest that the **bound must be corrected**.

Further Developments and Outlook

- 1. Extend results to include full BH geometry (work in progress)
- 2. We have performed a linear analysis in order by order expansion of the CS coupling and expect our final results to be analytically computable in the limit that $\alpha \to \infty$.
- 3. We would like to describe the endpoint of the phase transition including higher derivative corrections, similar to [Ooguri, Park '10].
- 4. Further analysis into (c-a): Is it possible to have c < a i.e. $c_1 < 0$ in interacting Lagrangian theories? [Maldacena, Hofmann '08]

Thank you for your attention!

Generic conditions on stability

Corrections to the BF bound:
$$m_{BF}^2 = -(3 - 144c_2 - 576c_3 - 288c_4)$$

Corrections to A: $A = \left(\frac{2\sqrt{6}}{12r} - \frac{4\sqrt{6}}{r}(c_1 + 2c_2 + 4c_3 + 2c_4)\right)$

 $\alpha_{c} = \alpha_{c}^{(0)} + 11.82c_{1} + 37.06c_{2} + 183.67c_{3} + 55.01c_{4} - 12.61c_{5}$

There could non-supersymmetric solutions for which there are no stable helical BH solutions

Generic conditions on stability

c_{1,..,4} corrections increase the critical Chern-Simons coupling

Why extremal RN black holes?

Study black hole thermodynamics to find out that value of k.

Corrections with c₁

With and without c₁ correction

More on CS, N = 2 SUGRA and SCFT

For any supersymmetric solution of D = 10 or D = 11 supergravity that consists of a warped product of d + 1 dimensional anti-de-Sitter space with a Riemannian manifold M, $AdS_{d+1} \times_w M$, there is a consistent Kaluza-Klein truncation on M to a gauged supergravity theory in d + 1dimensions for which the fields are dual to those in the superconformal current multiplet of the d-dimensional dual SCFT.

[Gauntlett, Varela '07]

To get **c** and **a**

