

Two Loop Integral Reduction From Elliptic and Hyperelliptic Curves.

A. Georgoudis, ETH Zürich IMPRS EPP 2015

1507.06310, AG and Yang Zhang

Motivation

LHC Run2

We need precision calculation of NLO and NNLO processes. Higher precision requires a better understanding of background processes. Reveal BSM physics.

Interesting hidden structure of QFT

 \mathcal{N} = 4 have given us a lot of insight on hidden symmetries and simplifications of scattering amplitudes, e.g. MHV amplitudes and integrability.

Beautiful Mathematics

A lot of connection with interesting topics in mathematics, e.g. Algebraic geometry and Number theory.

Integral Basis

Every L-loop amplitude can be written in terms of **Master Integrals** (MIs) $\{I_k\}$:

$$A_n^{L-\text{loop}} = \sum_k c_k I_k + \text{rational terms},$$

We have changed our problem :

BEFORE

Solve for every diagram one very complicated Integral. **AFTER**

Find the coefficient c_k and the I_k .

- Is more general, same I_k for different diagrams.
- Highly automatizable.

Unitarity

- Cutkosky Rules $\frac{1}{l^2 m^2 + i\epsilon} \rightarrow 2\pi i \delta (l^2 m^2)$
- 1-loop Amplitude (D-dimension):

- At 1-loop the basis is unique.
- We can extract the coefficents *c_k* by applying different cuts.

IBP

Another method for reducing the Integrals (in D-dimensio) is by **integral-by-parts** (IBP) identities.

$$\int \frac{d^D l_1}{(2\pi)^D} \dots \frac{d^D l_L}{(2\pi)^D} \frac{\partial}{\partial l_i^{\mu}} \frac{v_i^{\mu}}{D_1^{\alpha_1} \dots D_k^{\alpha_k}} = 0.$$

- Mostly based on Laporta algorithm (FIRE,AIR,Reduze,...).
- New methods based on computational algebraic geometry.
- Two loop takes very long time (several scales).

Maximal Unitarity and IBP

We can now define the on-shell IBP relations,

$$\oint \frac{d^D I_1}{(2\pi)^D} \dots \frac{d^D I_L}{(2\pi)^D} N(I_1, \dots I_L) \delta(D_1) \dots \delta(D_k) = \sum_j w_j \oint_{\mathcal{C}_j} \omega$$

We can study the maximal cut as an *algebraic variety*,

$$V:D_1=\ldots=D_k=0.$$

If V is a curve, the number of propagators equal DL-1, the IBP relations further simplify.

$$\oint \omega = 0, \quad \omega = dF.$$

Riemannian Surfaces

We are interested in a particular set of algebraic curves, $y^2 = h(x)$. If we see them as functions from $\mathbb{C} \to \mathbb{C}$,

Theorem (Riemann-Hurwitz)

We can associate a Riemann surface of a specific genus to every curve based on h(x)

Remark

We need to find exact 1-forms on the associated Riemann surface. The topological properties are determined by the maximal cut.

Massive Double Box

$$D_1 = l_1^2 - m_1^2, \qquad D_2 = (l_1 - k_1)^2 - m_1^2,$$

$$D_4 = l_2^2 - m_2^2, \qquad D_5 = (l_2 - k_4)^2 - m_2^2,$$

$$D_7 = (l_1 + l_2)^2 - m_3^2.$$

$$\begin{split} D_3 &= (l_1 - k_1 - k_2)^2 - m_1^2 \,, \\ D_6 &= (l_2 - k_3 - k_4)^2 - m_2^2 \,, \end{split}$$

Loop momenta parametrization:

$$\begin{split} l_1^{\mu} &= \alpha_1 k_1^{\mu} + \alpha_2 k_2^{\mu} + \alpha_3 \frac{s}{2} \frac{\langle 1 | \gamma^{\mu} | 2]}{\langle 14 \rangle [42]} + \alpha_4 \frac{s}{2} \frac{\langle 2 | \gamma^{\mu} | 1]}{\langle 24 \rangle [41]}, \\ l_2^{\mu} &= \beta_1 k_3^{\mu} + \beta_2 k_4^{\mu} + \beta_3 \frac{s}{2} \frac{\langle 3 | \gamma^{\mu} | 4]}{\langle 31 \rangle [14]} + \beta_4 \frac{s}{2} \frac{\langle 4 | \gamma^{\mu} | 3]}{\langle 41 \rangle [13]}, \end{split}$$

On-Shell solutions:

$$\begin{aligned} \alpha_1 &= 1 , & \alpha_2 &= 0 , & \alpha_3 &= \frac{m_1^2 t(s+t)}{\alpha_4 s^3} , \\ \beta_1 &= 0 , & \beta_2 &= 1 , & \beta_3 &= \frac{m_2^2 t(s+t)}{\beta_4 s^3} , \end{aligned}$$

Then the remaining one equation relates α_4 and β_4 ,

$$K(\alpha_4,\beta_4) = A(\alpha_4)\beta_4^2 + B(\alpha_4)\beta_4 + C(\alpha_4) = 0,$$

The scalar maximal cut is:

$$||_{7-cut} = \frac{s^2 t}{16} \oint \frac{d\alpha_4}{\sqrt{\Delta}}$$

The Numerator insertions are then:

$$\oint \mathsf{N}(\alpha_3, \alpha_4, \beta_3, \beta_4) \frac{\mathsf{d}\alpha_4}{\sqrt{\Delta}}$$

Our IBP should have the form:

$$dF(\alpha_3, \alpha_4, \beta_3, \beta_4) = \frac{\partial F}{\partial \alpha_3} d\alpha_3 + \frac{\partial F}{\partial \alpha_4} d\alpha_4 + \frac{\partial F}{\partial \beta_3} d\beta_3 + \frac{\partial F}{\partial \beta_4} d\beta_4 \equiv f \frac{d\alpha_4}{\sqrt{\Delta}}$$

We only need to evaluate the seeds:{ $d\alpha_3$, $d\alpha_4$, $d\beta_3$, $d\beta_4$ } and then use the chain rule to generate integral reduction relations.

ETH zürich

The seeds are:

$$d\alpha_4 = \eta \frac{d\alpha_4}{\eta} = (2A(\alpha_4)\beta_4 + B(\alpha_4))\frac{d\alpha_4}{\eta},$$

$$d\alpha_3 = d\left(\frac{\lambda_1}{\alpha_4}\right) = -\lambda_1 \frac{1}{\alpha_4^2} d\alpha_4 = -\frac{\alpha_3^2}{\lambda_1} d\alpha_4 \quad \lambda_1 \equiv \frac{m_1^2 t(s+t)}{s^3},$$

$$d\beta_4 = -\left(A'(\alpha_4)\beta_4^2 + B'(\alpha_4)\beta_4 + C'(\alpha_4)\right)\frac{d\alpha_4}{\eta},$$

$$d\beta_3 = d\left(\frac{\lambda_2}{\beta_4}\right) = -\lambda_2 \frac{1}{\beta_4^2} d\beta_4 = -\frac{\beta_3^2}{\lambda_2} d\beta_4 \quad \lambda_2 \equiv \frac{m_2^2 t(s+t)}{s^3}.$$

We can now find the MIs:

$$\mathsf{MI}_{\mathsf{dbox}} = \left\{ \mathit{I}_{\mathsf{dbox}}[\alpha_4\beta_3], \mathit{I}_{\mathsf{dbox}}[\alpha_4^2], \mathit{I}_{\mathsf{dbox}}[\alpha_4], \mathit{I}_{\mathsf{dbox}}[\beta_3], \mathit{I}_{\mathsf{dbox}}[1] \right\} \ .$$

An example of Integral reduction:

$$\begin{split} I_{\rm dbox}[\alpha_4^3] &= \frac{1}{2s^4(4m_2^2-s)} \bigg(3s^3 \left(m_1^2 s - m_2^2 s - m_3^2 s - 4m_2^2 t + st \right) I_{\rm dbox}[\alpha_4^2] \\ &+ s(4m_1^2 s^2 t - 2m_2^2 s^2 t - 2m_3^2 s^2 t + m_1^4 s^2 - 2m_2^2 m_1^2 s^2 - 2m_3^2 m_1^2 s^2 + m_2^4 s^2 + m_3^4 s^2 \\ &- 2m_2^2 m_3^2 s^2 + 2m_1^2 s t^2 - 4m_2^2 s t^2 - 8m_2^2 m_1^2 s t - 8m_2^2 m_1^2 t^2 + s^2 t^2) I_{\rm dbox}[\alpha_4] \\ &+ m_1^2 t(s+t) \left(m_1^2 s - m_2^2 s - m_3^2 s - 4m_2^2 t + st \right) I_{\rm dbox}[1] \right) + \dots \end{split}$$

Massive Cross-Box

- 7 Mls
- Perform the **analityc** reduction.

Computation Outlook

Perform the maximal cut and determine the algebraic structure.

Generate the possible numerators insertion and reduce them by a Gröbner basis division.

Generate the complete set of IBP, exact one-forms, to reduce the integral to MIs with the correct coefficients.

Conclusion Summary:

- No need to know the complete structure of the elliptic and hyperelliptic curves.
- Different from usual Unitarity methods.
- Very fast and easily generalisable to same genus curves.
- It can be solved for several internal masses.

Future Work:

- This method could be generalised to higher dimensional algebraic varieties.
- I am currently working with YZ on scattering equations to 1-Loop.