Motivation	Scenarios	Results	Summary
00000	00000	00000	0

Dark matter decays from non-minimal coupling to gravity (to appear soon)

O. Catà¹ A. Ibarra² S. Ingenhütt²

¹Ludwig-Maximilians-Universität München

²Technische Universität München

IMPRS EPP Workshop, October 26, 2015

ъ

Motivation	Scenarios	Results	Summary
00000	00000	00000	0
Outline			
UNITINA			

Motivation	Scenarios	Results	Summary
00000	00000	00000	0
Outline			

•0000	00000	00000	0
•0000	00000	00000	0
Motivation	Scenarios	Results	Summary

Evidence for dark matter

(a) M33 rotation curve

(b) Bullet cluster

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Cosmology: ample evidence for a non-luminous matter component in the universe
- ACDM model: dark matter particle required to be absolutely stable or have a very long lifetime > τ_{universe}

Motivation	Scenarios	Results	Summary
0000	00000	00000	0
Dark matter s	stability		

- Light dark matter: phase space suppression
- \bullet In principle: DM mass $\lesssim \Lambda_{\rm GUT} \approx 10^{16}~{\rm GeV}$
- Heavy dark matter: symmetry (global/local) to ensure stability
- Global symmetries might not be exact in curved spacetime

3

- Clearly, DM couples gravitationally
- \Rightarrow DM decays from non-minimal coupling to gravity?

Motivation	Scenarios	Results	Summary
00000	00000	00000	0
Matter + gravity I	: minimal coupling	g	

• Framework: Standard Model + general relativity

$$\mathcal{S} = \int d^4x \sqrt{-g} \left(-\frac{\overline{M}_P^2}{2} R + \mathcal{L}_{\rm SM} \right), \quad \overline{M}_P = \kappa^{-1} = \sqrt{\frac{\hbar c}{8\pi G}}$$

• Equations of motion: SM + Einstein field equations

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \kappa^2 T_{\mu\nu}$$

(日) (四) (三) (三)

э.

• Vacuum: $\kappa^4 T_{\mu\nu} \ll 1$

 \Rightarrow Expand metric around Minkowski background

Motivation	Scenarios	Results	Summary
00000	00000	00000	0
Matter + gravity	: minimal coupling	ſ	

• "Minkowski background + graviton field"

$$g_{\mu\nu} = \eta_{\mu\nu} + 2\kappa h_{\mu\nu}, \qquad \qquad \kappa h_{\mu\nu} \ll 1$$

• Minimal coupling \Rightarrow SM Feynman rules + graviton exchange (Planck mass suppressed)

Motivation	Scenarios	Results	Summary
0000	00000	00000	0
Matter $+$ gravity	I: non-minimal co	upling	

- Non-minimal coupling involving Ricci tensor/scalar allowed by SM symmetries
- Linear coupling of the DM field enables decay
- Lowest-dimensional operators coupling DM to curvature:

$$\mathcal{L}_{\xi} = -\xi M R \phi \qquad (\text{scalar singlet } \phi)$$
$$\mathcal{L}_{\xi} = -\frac{\xi}{M^2} R \left(\overline{L}_L \widetilde{H} \chi + \text{h.c.} \right) \qquad (\text{fermionic singlet } \chi)$$

э

- Reduces to stable DM in the flat-space limit $(R \rightarrow 0)$
- (Decay into gravitons?)

Motivation	Scenarios	Results	Summary
00000	00000	00000	0
Outling			
(JIII IIII IIII A			

Motivation	Scenarios	Results	Summary
00000	00000	00000	0
Non-minimally	coupled DM:	Lagrangian	

• Jordan frame action:

$$\mathcal{S} = \int d^4x \sqrt{-g} \left(-\frac{\overline{M}_P^2}{2} \Omega^2 R + \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm DM} \right)$$

$$\Omega^2(\phi) = 1 + 2\kappa^2 \xi M\phi \tag{(\phi)}$$

$$\Omega^2(\chi,\nu_L,h) = 1 + \frac{\sqrt{2\kappa^2\xi}}{M^2}(v+h)(\overline{\nu}_L\chi + \overline{\chi}\nu_L) \qquad (\chi)$$

(Einstein-Hilbert + non-minimal coupling)

Motivation	Scenarios	Results	Summary
00000	00000	00000	0
Non-minimally	coupled DM	: metric tensor	

• Find background metric in Jordan frame: solve Einstein equations

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \kappa^2 \left(\frac{1}{\Omega^2}T_{\mu\nu} - \frac{1}{\kappa^2\Omega^2} \left(g_{\mu\nu}\nabla^2\Omega^2 - \nabla_{\mu}\nabla_{\nu}\Omega^2\right)\right)$$

・ロト ・四ト ・ヨト ・ヨト

= 900

 \Rightarrow Vacuum limit?

DM field mixed into metric tensor
⇒ Background metric? Graviton?

Motivation	Scenarios	Results	Summary
00000	00000	00000	0
Weyl transfo	ormation		

• Easier: perform transformation into Einstein frame to decouple DM field

$$\widetilde{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}$$

• Einstein frame action:

$$\mathcal{S} = \int d^4x \sqrt{-\widetilde{g}} \left(-\frac{\overline{M}_P^2}{2} \widetilde{R} + \widetilde{\mathcal{L}}_{\text{matter}} \right)$$

・ ロ ト ・ 白 ト ・ モ ト ・ モ ト

= 900

 \Rightarrow Gravitational part canonical

• Expand metric as usual, derive Feynman rules, compute decay rates

Motivation	Scenarios	Results	Summary
00000	00000	00000	O
Finstein frame: m	atter action		

• Tradeoff: non-trivial coupling to SM field content

$$\widetilde{\mathcal{L}}_{matter} = \frac{1}{\Omega^4} \left(\mathcal{L}_{SM} + \mathcal{L}_{DM} \right) + \frac{3 \overline{M}_P^2}{\Omega^2} (\widetilde{\nabla}_{\mu} \Omega) (\widetilde{\nabla}^{\mu} \Omega)$$

• Schematically:

$$(\Omega^2 R + \mathcal{L}_{SM}) \xrightarrow{Weyl trafo} \left(\widetilde{R} + \mathcal{L}_{SM} / \Omega^4 \right)$$

- Direct DM decays into SM particles possible through $\mathcal{L}_{SM}/\Omega^4$ coupling introduced by Weyl transformation
- Example: $\phi \to ZZ$ from

$$\widetilde{\mathcal{L}}_{\text{matter}} \supset \left(-\frac{2\xi M}{\overline{M}_P^2} \phi \right) \frac{m_Z^2}{2} \eta^{\mu\nu} Z_{\mu} Z_{\nu}$$

3

Motivation	Scenarios	Results	Summary
00000	0000●	00000	0
Inert doublet mod	el: Lagrangian		

• Add second scalar SU(2) doublet η to the SM

$$\mathcal{L}_{\eta} = g^{\mu\nu} (D_{\mu}\eta)^{\dagger} (D_{\nu}\eta) - V_{\mathbb{Z}_{2}}(\eta, H)$$
$$\eta = \left(\eta^{+}, \frac{1}{\sqrt{2}}(\eta^{0} + iA^{0})\right)$$

- \mathbb{Z}_2 ensures lightest component of η is absolutely stable in flat spacetime
- Particularly η^0 and A^0 viable DM candidates

$$\mathcal{L}_{\xi} = -\xi R \left(H^{\dagger} \eta + \text{h.c.} \right)$$
$$\Omega^{2}(\eta, h) = 1 + 2\kappa^{2} \xi(v + h) \eta^{0}$$

(日) (월) (문) (문)

₹ 9Q@

Motivation	Scenarios	Results	Summary
00000	00000	00000	0
Outline			
(JIITIINA			

Motivation	Scenarios	Results	Summary
00000	00000	00000	0
Scalar singlet DM	ϕ		

• Two-body final states: only contribute for $300 \text{ GeV} \leq m_{\phi} \leq 1 \text{ TeV}$

$$\begin{split} \phi &\to hh, \ W^+W^-, \ ZZ & \sim m_\phi^3 \\ \phi &\to f\overline{f} & \sim m_f^2 m_\phi \end{split}$$

• Three-body decays: dominate for $m_{\phi} \lesssim 50 \text{ TeV}$

$$\begin{split} \phi &\to W^+ W^- h, \ ZZh, \ f\overline{f}W^{\pm}, \ f\overline{f}Z & \sim \frac{m_{\phi}^3}{v^2} \\ \phi &\to f\overline{f}h & \sim \frac{m_f^2 m_{\phi}^3}{v^2} \\ \phi &\to f\overline{f}\gamma, \ q\overline{q}g & \sim m_{\phi}^3 \\ \phi &\to hhh & \sim m_h^2 m_{\phi} \end{split}$$

(日)、(四)、(三)、(三)、

₹ 9Q@

Motivation	Scenarios	Results	Summary
00000	00000	0●000	O
Scalar singlet DM	ϕ		

• Four-body final states: dominate above $m_{\phi} \gtrsim 50 \text{ TeV}$

$$\begin{split} \phi &\to W^+ W^- hh, \ ZZhh & \sim \frac{m_{\phi}^7}{v^4} \\ \phi &\to hhhh & \sim \frac{m_h^4 m_{\phi}^3}{v^4} \end{split}$$

(日) (四) (日) (日) (日)

• Coupling function: $1 + 2\kappa^2 \xi M \phi$

 \Rightarrow Generically: SM vertex + DM scalar

• All rates
$$\sim \frac{\xi^2 M^2}{\overline{M}_P^4}$$

Motivation	Scenarios	Results	Summary
00000	00000	00000	O
Scalar (inert) de	oublet DM η^0		

- Similar to scalar singlet, $\xi M \to \xi(v+h)$
- Two-body decays: $\eta^0 \rightarrow hh, W^+W^-, ZZ, f\overline{f}$
- Three-body: $\eta^0 \to hhh, W^+W^-h, ZZh, f\overline{f}h, f\overline{f}V$
- Four-body: $\eta^0 \rightarrow hhhh, W^+W^-hh, ZZhh, f\overline{f}hh, f\overline{f}Vh$

ъ

• Five-body:

 $\eta^0 \rightarrow hhhhh, W^+W^-hhh, ZZhhh$

Motivation	Scenarios	Results	Summary
00000	00000	00000	0
Fermionic sin	glet DM χ		

• Coupling function: $1 + \sqrt{2}\kappa^2 (v+h)(\overline{\nu}\chi + \overline{\chi}\nu)/M^2$

・ロト ・四ト ・日下 ・日下

3

 \Rightarrow Schematically: SM vertices + $((v+h)\nu\chi)$

- $\chi \to hh\nu, W^+W^-\nu, ZZ\nu, f\overline{f}\nu,...$
- "Scalar doublet + neutrino"

Motivation	Scenarios	Results	Summary
00000	00000	0000●	0
Stability considera	itions		

- BRs fully calculable, given by SM Lagrangian
- Multi-body final states dominate once kinematically accessible
- Constraints on $\tau_{\rm DM}$:
 - $\tau_{\rm DM}\gtrsim \tau_{\rm universe}\sim 4\times 10^{17}~{\rm s}$
 - $\tau_{\rm DM} \gtrsim 10^{27}$ s for 200 MeV $< m_{\rm DM} < 30$ TeV from γ -ray flux (Fermi-LAT, H.E.S.S.)

• $\tau_{\rm DM}\gtrsim 10^{25}~{\rm s}$ for 1 TeV $< m_{\rm DM} < 10^{15}~{\rm GeV}$ from ν flux (AMANDA, IceCube, ANITA)

Motivation	Scenarios	Results	Summary
00000	00000	00000	0
Outling			

Motivation	Scenarios	Results	Summary
00000	00000	00000	•
Summary			

- We consider scenarios where DM stabilized by a global symmetry in flat space becomes unstable in curved spacetime
- Non-minimal coupling to curvature linear in DM field allowed by SM symmetries
- Vertices involving all Standard Model particles arise after Weyl transformation

ъ

- **BRs fixed** by SM structure, only two parameters
- Limits on couplings obtainable from CR fluxes