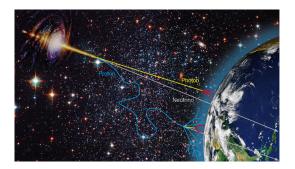
Background ooo oooooo	Astrophysical fluxes	lceCube oo oooo	DM decay 00000000 0000	Conclusions

High energy events in IceCube: hints of decaying leptophilic Dark Matter?

Edoardo Vitagliano

Università degli studi di Napoli "Federico II" 33rd IMPRS Workshop Max Planck Institute for Physics (Main Auditorium), Munich

26/10/2015

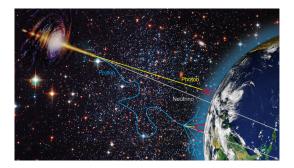


Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions
000		00 0000	0000000	

Messengers from space



Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions
000		00 0000	0000000	

Messengers from space

Neutrino astronomy

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions
000		00 0000	0000000	

Neutrino astronomy

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions
000		00 0000	0000000	

Neutrino astronomy

- Where do they come from?
- How are they produced?
 - Bottom-up
 - Top-down
 - Both? \rightarrow arXiv:1507.01000

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions
000		00 0000	0000000	

Neutrino astronomy

- Where do they come from?
- How are they produced?
 - Bottom-up
 - Top-down
 - Both? → arXiv:1507.01000

Answers from

- Energy spectrum
- Direction
- Flavour composition

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions
000		00 0000	0000000	

Neutrino astronomy

- Where do they come from?
- How are they produced?
 - Bottom-up
 - Top-down
 - Both? → arXiv:1507.01000

Answers from

- Energy spectrum
- Direction
- Flavour composition

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions
000		00 0000	0000000	

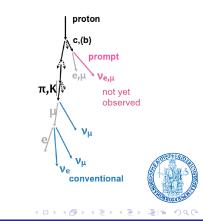
Outline

1 Background

- Cosmic ray physics
- Atmospheric fluxes from Corsika
- 2 Astrophysical fluxes
 - Propagation
- 3 IceCube
 - Mechanism & goals
 - Data

4 DM decay

- Why DM?
- Analysis & Results


Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background ●oo ○○○○○	Astrophysical fluxes	lceCube oo oooo	DM decay 00000000 0000	Conclusions
Cosmic ray physics				

Background

- The interactions of Cosmic Rays (CR) with the atmophere produce two types of background
- Conventional background: produced by the decays of π and K
- The prompt background corresponds to v_{e(µ)} and e(µ) coming from the decay of charmed mesons

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background ooo ooooo	Astrophysical fluxes	lceCube oo ooooo	DM decay 00000000 0000	Conclusions
Cosmic ray physics				

Analytical spectra

Dependence on primary flux ($E_{\nu} \approx 0.05 E_{p}$)

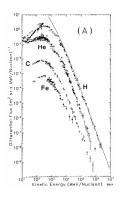
 $p + p \rightarrow X + m\pi$ $\pi \rightarrow \mu + \nu_{\mu}$ $\mu \rightarrow e + \nu_{e} + \nu_{\mu}$

 Spectra are computed through transport equations (decay, interaction, energy losses etc.) or phenomenological models (e.g. Heitler model)

Transport equations are coupled \rightarrow approximations (e.g. no μ decay)

$$\frac{d\phi_{\nu}}{dE_{\nu}}\Big|_{C} = \phi_{N}(E_{\nu}, X = 0) \frac{A_{C \to \nu}}{1 + \frac{B_{C \to \nu}E_{\nu}\cos\theta}{\epsilon_{C}}}$$

Edoardo Vitagliano


Università degli studi di Napoli "Federico II"

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions
0000		00 0000	0000000	
Cosmic ray physics				

Cosmic rays: primary particles

- Mostly protons
- Differential spectrum

$${d\phi_N\over dE} \propto E^{-(\gamma+1)}$$

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background oo● ooooo	Astrophysical fluxes	lceCube oo oooo	DM decay 00000000 0000	Conclusions
Cosmic ray physics				

Cosmic rays: primary particles

- Mostly protons
- Differential spectrum

$$rac{d\phi_N}{dE} \propto E^{-(\gamma+1)}$$

γ dependent
 on energy (up
 to 3 PeV ≈ 1.7,
 then ≈ 2.0)

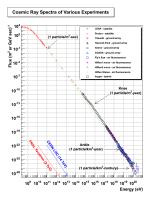


Image: A matrix

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions
000 ⁻ •0000		00 0000	0000000	
Atmospheric fluxes f	rom Corsika			

Atmospheric fluxes from CORSIKA

- Analytical approximation is not good enough for a comparison with experimental data
- We need to run a Monte Carlo→CORSIKA (COsmic Ray SImulation for KAscade)
- A complete Monte Carlo-used by many collaborations for different experiments-includes: electromagnetic interactions, decays etc.

Università degli studi di Napoli "Federico II"

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions		
000 0 000		00 0000	0000000			
A top a set to set a flow of a flow of a set of a						

Atmospheric fluxes from Corsika

Atmospheric fluxes from CORSIKA

C														
C														
C	0	00	00	00	000	00	00	00	00	0	0	(0	
C	0	0	0	0	0	0	0	0	00	0	0	0	0	
C	0		0	0	0	0	0		00	0	0	0	0	
C	0		0	0	0	0	00	00	00	00		0	0	
C	0		0	0	000	00		0	00	0	0	000	0000	
C	0		0	0	0	0	0	0	OD.	0	0	0	0	
c	0	00	00	00	0	0	00	00	00	0	0	0	0	
C														
ē.	COS	MTC.	RAY SI		TON	AT KAI	RESRU	HE						
ē.														
2														
2.	PRO	сран	TO ST	тыш ал		TENST	E AT	D SH	NERS	TN	ATMOSPH	EDE		
-		series i	10 2.		the they			15 2010	on an a	211		to 1 1 too		
r e	ASED	ON		DAM (IE D	K.E. (RTER	CD 1	INTRE	TT26	Y BERN			
											UNIVE	DETTV	BORDEA	IIV
											MAGNETI			UA.
2 6	034 1	110	NING PI	JKHUL	13 10	W 21M	ULAIT	UN U	F ELE	CIRO	NAGRETT	C PAR	TULES	
ι.	ALC: Y Y			COND	Decas									
			FUER H											
C N	ERNP	ORSC	HUNGS	ZENTRU	W W	ID UNI	VERSI	TY 0	r KARI	LSRU	HE			
C														
	ERSI(
C D	ATE:	26.	OCTO	BER 19	989									
C														
C														

Edoardo Vitagliano

Università degli studi di Napoli "Federico II"

Background ○○○ ○○●○○	Astrophysical fluxes	lceCube oo oooo	DM decay ೦೦೦೦೦೦೦೦ ೦೦೦೦	Conclusions
Atmospheric fluxes from	n Corsika			

Difficulties

Edoardo Vitagliano

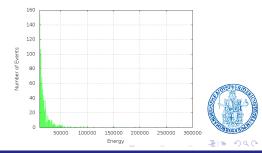
General difficulties

- Including the veto of IceCube (reduces the downgoing background)
- Absorption by Earth
- Interaction with the detector

 $\rightarrow \mbox{Forcing}$ the Monte Carlo

Prompt neutrinos:

 Poor data in the kinematical and energetical range of interest (QCD & non perturbative field theory)



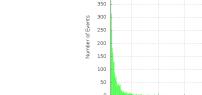
Università degli studi di Napoli "Federico II"

Background ○○○ ○○○●○	Astrophysical fluxes	lceCube oo oooo	DM decay 00000000 0000	Conclusions
Atmospheric fluxes from C	orsika			

A home-made analysis

- We have realised a simulation of 10000 vertical events with primary energy in the range [3, 100] PeV (relevant to $E_{\nu} \in [10, 1000]$ TeV)
- Atmospheric fluxes are not appreciable at 1 PeV

Università degli studi di Napoli "Federico II"


 \mathbf{I} ν flux \rightarrow

Edoardo Vitagliano

Background ○○○ ○○○○●	Astrophysical fluxes	lceCube oo oooo	DM decay 00000000 0000	Conclusions
Atmospheric fluxes from C	Corsika			

A home-made analysis

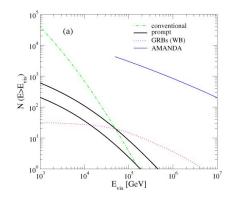
- We have realised a simulation of 10000 vertical events with primary energy in the range [3, 100] PeV (relevant to $E_{\nu} \in [10, 1000]$ TeV)
- Atmospheric fluxes are not appreciable at 1 PeV

50000 100000

450 400

Università degli studi di Napoli "Federico II"

300000


200000

 \blacksquare μ flux \rightarrow

Edoardo Vitagliano

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions
000	000	00 0000	0000000	
Dreperation				

From atmospheric to astrophysical neutrinos

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes ○●○	lceCube oo oooo	DM decay 0000000 0000	Conclusions
Propagation				

CR propagation

- How can we obain information about astrophysical neutrinos?
- We observe at Earth fluxes which depend on propagation (galactic magnetic fields)
- Propagation is studied through different models. A good approach is via the Ginzburg-Syrovatskii equation, which reduces to the leaky box model assuming large escape time (T.K.Gaisser, *Cosmic Rays and Particle Physics*, Cambridge University Press (1990))

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes ○○●	IceCube oo oooo	DM decay ೦೦೦೦೦೦೦೦ ೦೦೦೦	Conclusions
Propagation				

Source flux from observed flux

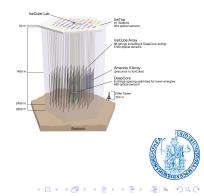
From observed to source flux

$$rac{d\phi}{dE} \propto {\sf E}^{-(\gamma+1)} o rac{d\phi_{\cal S}}{dE} \propto {\sf E}^{-(\gamma+1-\delta)}$$

For example

$${d\phi\over dE}\propto E^{-2.7}
ightarrow {d\phi_S\over dE}\propto E^{-2}$$

Neutrinos are not trapped by galactic magnetic fields

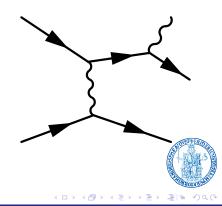

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	IceCube ●o ○○○○	DM decay 00000000 0000	Conclusions
Mechanism & goals				

IceCube: the detector

- What does it search: high energy neutrinos in the range TeV-EeV
- How: Cherenkov detector with 5160 Digital Optical Modules in deep ice, with a large fiducial volume (≈ 1 km³)+veto
- When: 2010-2013

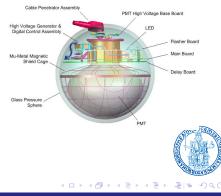

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	lceCube ●o ○○○○	DM decay 00000000 0000	Conclusions
Mechanism & goals				

IceCube: the detector

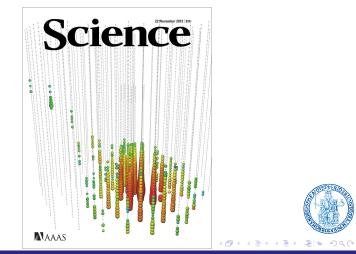
- What does it search: high energy neutrinos in the range TeV-EeV
- How: Cherenkov detector with 5160 Digital Optical Modules in deep ice, with a large fiducial volume (≈ 1 km³)+veto
- When: 2010-2013


Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	lceCube ●○ ○○○○	DM decay ೦೦೦೦೦೦೦೦ ೦೦೦೦	Conclusions
Mechanism & goals				

IceCube: the detector


- What does it search: high energy neutrinos in the range TeV-EeV
- How: Cherenkov detector with 5160 Digital Optical Modules in deep ice, with a large fiducial volume (≈ 1 km³)+veto
- When: 2010-2013

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	lceCube ○● ○○○○	DM decay 00000000 0000	Conclusions
Mechanism & goals				

IceCube: events



Edoardo Vitagliano

Università degli studi di Napoli "Federico II"

Background ooo ooooo	Astrophysical fluxes	lceCube ○● ○○○○	DM decay ೦೦೦೦೦೦೦೦ ೦೦೦೦	Conclusions
Mechanism & goals				

IceCube: events

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions
000		00 •000	0000000	
D .				

Astrophysical neutrinos: background

The expected background, given by muons and atmospheric neutrinos from cosmic ray showers is given by

$$N_{\mu^\pm}=8.4\pm4.2$$

and

$$N_{\nu+\bar{\nu}}^{TOT} = 6.6^{+5.9}_{-1.6}$$

the asymmetric error is due to prompt neutrinos

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

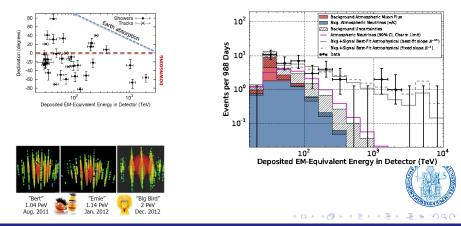
Background 000 00000	Astrophysical fluxes	lceCube ○○ ○●○○	DM decay 00000000 0000	Conclusions
- ·				

Astrophysical neutrinos: data

- IceCube has found 37 candidate events with deposited energy from 30 TeV circa to 2 PeV; 2 events with $E_{\nu} \approx 1$ PeV and one with $E_{\nu} \approx 2$ PeV
- Of all the events 5 could be background

Astrophysical neutrinos detected (5.7 σ)

■ IceCube Coll., arXiv:1311.5238, arXiv:1405.5303

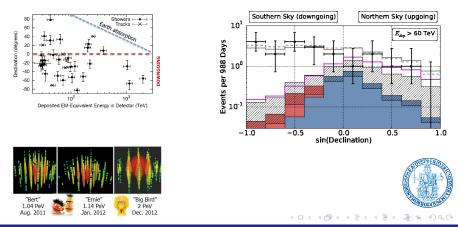

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	lceCube ○○ ○○●○	DM decay 0000000 0000	Conclusions

Data

Astrophysical neutrinos detected: energy spectrum


Università degli studi di Napoli "Federico II"

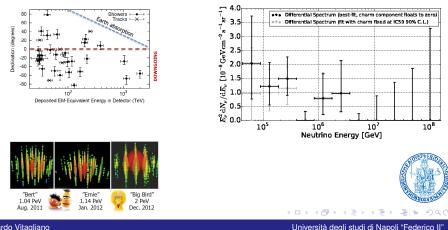
Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	lceCube ○○ ○○●○	DM decay 00000000 0000	Conclusions

Data

Astrophysical neutrinos detected: energy spectrum

Edoardo Vitagliano


High energy events in IceCube: hints of decaying leptophilic Dark Matter?

Università degli studi di Napoli "Federico II"

Background 000 00000	Astrophysical fluxes	lceCube ○○ ○○●○	DM decay 00000000 0000	Conclusions

Data

Astrophysical neutrinos detected: energy spectrum

Edoardo Vitagliano

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions
000 00000		00 0000	0000000 0000	
Data				

Isotropic (
$$e : \mu : \tau$$
) = (1 : 1 : 1) flux

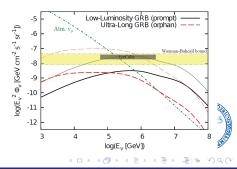
A first fit with fixed PL (not fitting well PeV events)

$$\left. \mathsf{E}^2 rac{d\phi_{
u+ar{
u}}}{d \mathsf{E}}
ight|_{\mathit{flavour}} = (0.95\pm0.3) imes10^{-8}$$

A second fit

$$E^2 \frac{d\phi_{\nu+\bar{\nu}}}{dE}\bigg|_{flavour} = 1.5 \times 10^{-8} \left(\frac{E}{100 \text{ TeV}}\right)^{-0.3}$$

Edoardo Vitagliano


Università degli studi di Napoli "Federico II"

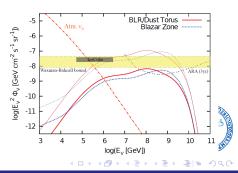
Background 000 00000	Astrophysical fluxes	lceCube oo ooooo	DM decay ●0000000 0000	Conclusions
Mar DM2				

Can bottom-up accelerators explain all data?

- BU accelerators have difficulties in explaining the data
- GRBs have the right shape profile but an order of magnitude lower normalization

- K. Murase, arXiv:1410.3680
- S. Chakraborty, I. Izaguirre, arXiv:1501.02615

Università degli studi di Napoli "Federico II"


Edoardo Vitagliano

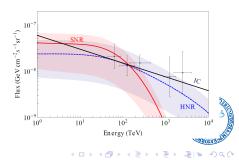
Background ০০০ ০০০০০	Astrophysical fluxes	lceCube oo oooo	DM decay ●0000000 ○000	Conclusions

Can bottom-up accelerators explain all data?

- BU accelerators have difficulties in explaining the data
- GRBs have the right shape profile but an order of magnitude lower normalization
- AGN can explain PeV events but are in tension with lower energies data

- K. Murase, arXiv:1410.3680
- S. Chakraborty, I. Izaguirre, arXiv:1501.02615

Università degli studi di Napoli "Federico II"

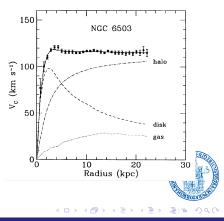

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	lceCube oo oooo	DM decay ●0000000 ○000	Conclusions

Can bottom-up accelerators explain all data?

- BU accelerators have difficulties in explaining the data
- GRBs have the right shape profile but an order of magnitude lower normalization
- AGN can explain PeV events but are in tension with lower energies data
- SNRs have a cut-off at \approx 100 TeV (maybe HNRs?)

- K. Murase, arXiv:1410.3680
- S. Chakraborty, I. Izaguirre, arXiv:1501.02615


Università degli studi di Napoli "Federico II"

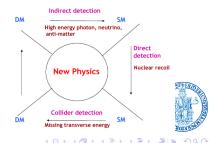
Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	IceCube oo oooo	DM decay o●ooooooo ○○○○	Conclusions
Why DM?				

What is Dark Matter?

- There are hints of non luminous matter in the universe
- As an example, rotation curves of spiral galaxies can't be fitted by luminous matter only

Università degli studi di Napoli "Federico II"


Edoardo Vitagliano

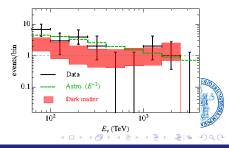
Background 000 00000	Astrophysical fluxes	lceCube oo oooo	DM decay ००●००००० ००००	Conclusions
Why DM2				

Icecube from DM: previous approaches

- Different DM scenarios have already been proposed
- Boosted DM: direct detection
- DM coupled to the Higgs
- Tension with data (neutrinos from quark sector vs astrophysical sources at lower energies)

- J. Kopp, J. Liu, X.-P. Wang, arXiv:1503.02669
- A. Esmaili, P.D. Serpico, arXiv:1308.1105

Università degli studi di Napoli "Federico II"


Edoardo Vitagliano

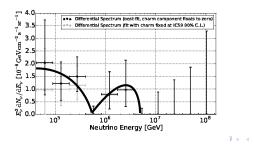
Background 000 00000	Astrophysical fluxes	lceCube oo oooo	DM decay ○○●○○○○○ ○○○○	Conclusions
Why DM2				

Icecube from DM: previous approaches

- Different DM scenarios have already been proposed
- Boosted DM: direct detection
- DM coupled to the Higgs
- Tension with data (neutrinos from quark sector vs astrophysical sources at lower energies)

- J. Kopp, J. Liu, X.-P. Wang, arXiv:1503.02669
- A. Esmaili, P.D. Serpico, arXiv:1308.1105

Università degli studi di Napoli "Federico II"


Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	IceCube oo oooo	DM decay ○○○●○○○○ ○○○○	Conclusions
Why DM?				

Icecube from DM

We have supposed that the flux is made up of two components astro+DM \rightarrow new particle χ

- fermion
- Dirac mass
- **1**₀ under $SU(3)_C \times SU(2)_L \times U(1)_Y$

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	IceCube oo oooo	DM decay ○○○●○○○○ ○○○○	Conclusions
Why DM?				

Icecube from DM

We have supposed that the flux is made up of two components astro+DM \rightarrow new particle χ

- fermion
- Dirac mass
- **1**₀ under $SU(3)_C \times SU(2)_L \times U(1)_Y$

Edoardo Vitagliano

Università degli studi di Napoli "Federico II"

Background 000 00000	Astrophysical fluxes	IceCube oo oooo	DM decay ○○○○●○○○○ ○○○○	Conclusions
Why DM?				

Icecube from DM

The astrophysical component is parametrized by

• Unbroken Power Law ($E^2 d\phi/dE \propto E^{-\gamma}$)

Broken Power Law ($E^2 d\phi/dE \propto E^{-\gamma} \exp\{-E/E_0\}$)

The DM component is given by two contributions

Galactic
$$(r(s, l, b) = \sqrt{s^2 + R_{\odot}^2 - 2sR_{\odot}\cos b\cos l})$$

$$\frac{d\phi_{\nu}^{h}}{dE_{\nu}}(l,b) = \frac{1}{4\pi m_{\chi} \tau_{\chi}} \frac{dn_{\nu}}{dE_{\nu}} \int_{0}^{\infty} ds \rho_{h}[r(s,l,b)]$$

Extra Galactic

$$\frac{d\phi_{\nu}^{eg}}{dE_{\nu}} = \frac{\Omega_{\chi}\rho_{c}}{4\pi m_{\chi}\tau_{\chi}} \int_{0}^{\infty} dz \, \frac{1}{H(z)} \frac{dn_{\nu}}{dE_{\nu}} \left[(1+z)E_{\nu} \right]$$

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	lceCube oo oooo	DM decay ○○○○○●○○ ○○○○	Conclusions
Why DM2				

Effective terms (up to dimension 6)

Dimensions	DM decay operators
4	$-\overline{L}\widetilde{\phi}\chi$
5	_
6	$ar{L}$ / $ar{L}\chi, ~~\phi^{\dagger}\!\phiar{L} ilde{\phi}\chi, ~~(ilde{\phi})^t {\cal D}_{\mu} ilde{\phi}ar{l}\gamma^{\mu}\chi,$
	$ar{Q}dar{L}\chi, \ ar{u}Qar{L}\chi, \ ar{L}dar{Q}\chi, \ ar{L}dar{Q}\chi, \ ar{U}\gamma_{\mu}dar{I}\gamma^{\mu}\chi,$
	${\cal D}^{\mu} ilde{\phi}{\cal D}_{\mu}ar{L}\chi, ~~~ {\cal D}^{\mu}{\cal D}_{\mu} ilde{\phi}ar{L}\chi,$
	${\cal B}_{\mu u}ar{L}\sigma^{\mu u} ilde{\phi}\chi, ~~ {\cal W}^{a}_{\mu u}ar{L}\sigma^{\mu u} au^{a} ilde{\phi}\chi$

A CONTRACTOR

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	lceCube oo oooo	DM decay 000000●0 0000	Conclusions
Why DM?				
Decaying	g DM			

We have to compute dn_{ν}/dE : what are we asking to the new particle χ ?

- *naturally* small coupling → symmetry
- primary $\nu \rightarrow$ direct coupling with neutrino
- spreading ν flux \rightarrow multi body final state
- ...not too much→ leptophilic

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	lceCube oo oooo	DM decay ○○○○○● ○○○○	Conclusions
Why DM?				

Symmetry

Just an operator with this characteristics

$$\mathcal{L}_{decay} \sim rac{y_{lphaeta\gamma}}{\Lambda^2} ar{L}_lpha I_eta ar{L}_\gamma \chi + hc$$

How to exclude all the others without unnatural tiny couplings? Introducing a symmetry like A_4 (or others!)

$$\Gamma_{\chi}^{\textit{total}}=6 imes\Gamma_{\chi}=rac{1}{1024}rac{4y^2}{\Lambda^4}rac{m_{\chi}^5}{\pi^3}$$

Edoardo Vitagliano

Università degli studi di Napoli "Federico II"

Background 000 00000	Astrophysical fluxes	IceCube oo oooo	DM decay ○○○○○○○ ●○○○	Conclusions
Analysis & Results				

Analysis

We have conduced a likelihood analysis supposing

$$E_{\nu}^{2}\frac{d\phi_{\nu}}{dE_{\nu}}(E_{\nu})=E_{\nu}^{2}\frac{d\phi_{\nu}^{\chi}}{dE_{\nu}}(E_{\nu})+E_{\nu}^{2}\frac{d\phi_{\nu}^{Ast}}{dE_{\nu}}(E_{\nu})$$

The two parametrizations for the astro flux are

$$E_{\nu}^{2} \frac{d\phi^{Ast}}{dE_{\nu}} (E_{\nu}) = \phi_{0} \left(\frac{E_{\nu}}{100 \text{ TeV}}\right)^{-\gamma}$$
$$E_{\nu}^{2} \frac{d\phi^{Ast}}{dE_{\nu}} (E_{\nu}) = \phi_{0} \left(\frac{E_{\nu}}{100 \text{ TeV}}\right)^{-\gamma} \exp\left(-\frac{E_{\nu}}{125 \text{ TeV}}\right) \qquad (11)$$

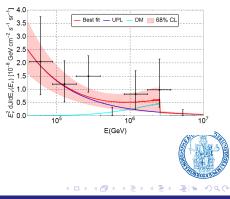
Edoardo Vitagliano

Università degli studi di Napoli "Federico II"

Background ০০০ ০০০০০	Astrophysical fluxes	lceCube oo oooo	DM decay ○○○○○○○○ ○●○○	Conclusions
Analysis & Results				
Analysis				

- The mass of χ is fixed by the most energetic neutrinos to $m_{\chi} \approx 5$ PeV, and γ is 0.0 for BPL (spectral index 2.0) and 0.7 for UPL \rightarrow obtained by likelihoods ratios
 - MONTE CARLO → The best fit for the normalization and the coupling are

Case	<i>y</i> [10 ⁻⁵]	$\phi_0 [10^{-8}]$	χ^2 /dof
UPL	$0.40\substack{+0.27\-0.40}$	$1.3^{+1.1}_{-1.0}$	1.04
BPL	$0.55\substack{+0.27 \\ -0.48}$	$4.1^{+3.3}_{-2.9}$	0.75

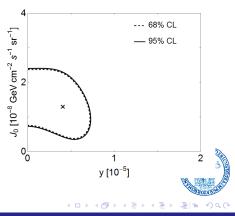


Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	lceCube oo oooo	DM decay ○○○○○○○○ ○○●○	Conclusions
Analysis & Results				
Results:	UPL			

The UPL DM coupling is comparable to 0 at 1 σ

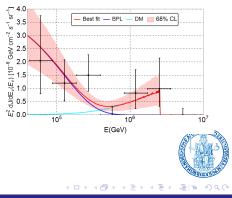

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	lceCube oo oooo	DM decay ○○○○○○○○ ○○●○	Conclusions
Analysis & Results				

Results: UPL

The UPL DM coupling is comparable to 0 at 1 σ

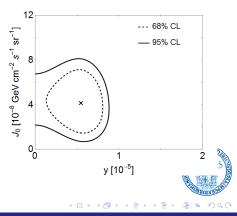


Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background 000 00000	Astrophysical fluxes	lceCube oo oooo	DM decay ○○○○○○○○ ○○○●	Conclusions
Analysis & Results				
Results:	BPL			

- There is a (still weak) hint of DM in the BPL case (2 σ compatibility)
- Reduced χ^2 is smaller than in the UPL case


Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background ০০০ ০০০০০	Astrophysical fluxes	lceCube ○○ ○○○○	DM decay ○○○○○○○ ○○○●	Conclusions
Analysis & Results				

Results: BPL

- There is a (still weak) hint of DM in the BPL case (2 σ compatibility)
- Reduced χ^2 is smaller than in the UPL case

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions
000		00 0000	0000000	

Conclusions

- We have obtained with a hand-made analysis the estimate to the atmospheric background
- We have shown the astrophysical flux we expected
- IceCube, its mechanism, goals and data have been reported
- Given some hints of tension between data and previous models, we have built a double (astro+DM) flux model

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Background	Astrophysical fluxes	IceCube	DM decay	Conclusions
000		00 0000	0000000	

We have found the data to be well explained by a BPL+DM

- The model is falsifiable:
 - dip at 300 TeV/ cut off at 2 PeV
 - anisotropy near the galactic center
- More data (IceCube, KM3NeT and CTA) will shed light

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

000 000 000 000 0000000 00000 0000 000	Background	Astrophysical fluxes	IceCube	DM decay	Conclusions

- We have found the data to be well explained by a BPL+DM
- The model is falsifiable:
 - dip at 300 TeV/ cut off at 2 PeV
 - anisotropy near the galactic center
- More data (IceCube, KM3NeT and CTA) will shed light

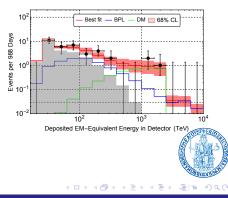
Thank you

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

New analysis

Case	<i>y</i> [10 ⁻⁶]	$\phi_0 [10^{-8}]$	χ^2 /dof
UPL	$3.46^{+4.59}_{-2.37}$	$0.83^{+1.31}_{-0.47}$	1.07
BPL	$3.67^{+4.64}_{-2.77}$	$2.43^{+3.74}_{-1.29}$	0.96

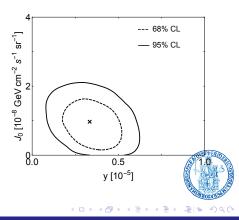


Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Results: UPL

The UPL DM coupling is not comparable to 0 at 2 σ

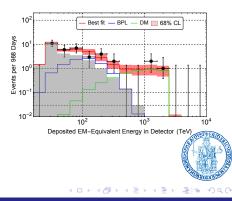


Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Results: UPL

The UPL DM coupling is not comparable to 0 at 2 σ

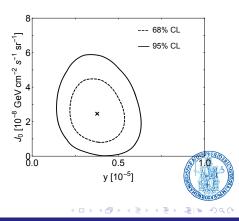


Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Results: BPL

- There is hint of DM in the BPL case
- Reduced χ^2 is smaller than in the UPL case



Università degli studi di Napoli "Federico II"

Edoardo Vitagliano

Results: BPL

- There is hint of DM in the BPL case
- Reduced χ^2 is smaller than in the UPL case

Università degli studi di Napoli "Federico II"

Edoardo Vitagliano