

$\begin{array}{l} \text{Z+}\mu \text{ studies} \\ \text{with fake muons from light jets} \end{array}$

Verena Walbrecht, Sandra Kortner

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

H4I Meeting, November 3rd, 2015

MAX-PLANCK-GESELLSCHAFT

Data and MC Samples

Data (p2425):

- Period D G
- Integrated Luminosity: 1.03 fb⁻¹
- GRĽ:

data15_13TeV.periodAllYear_DetStatus-v67-pro19-02_ DQDefects-00-01-02_PHYS_StandardGRL_All_Good.xml

Luminosity calculation and pileup reweighting:

ilumicalc_histograms_None_276262-280614.root

Monte Carlo Simulation (p2419):

- Z+jets (Sherpa, 361372-361419)
- tt (Powheg/Pythia, 410000)
- WZ (Powheg/Pythia8, 361601)
- qq→ZZ (Powheg/Pythia8, 361603)
- gg→ZZ (Sherpa, 361073)

Event Selection

• Following the guidelines on the HZZIIIIPreparationRunII2014 Twiki, AnalysisBase 2.3.29.

<u>Z \rightarrow ee and Z $\rightarrow \mu\mu$ candidates:</u>

- Nominal lepton identif cation criteria, isolation and IP-cuts applied.
- p_{T1} > 20 GeV, p_{T2} > 15 GeV.
- $|m_{\parallel} M_{Z}^{PDG}| < 15 \text{ GeV}$

Additional muons:

- Exactly one additional combined muon, $p_{\tau} > 6$ GeV.
- No cut on impact parameter signif cance, no isolation criteria.
- J/ Ψ veto applied on Z($\rightarrow \mu\mu$)+ μ candidates.
- Enrichment with Z+light jet events: by means of the cut on the momentum balance, (p_{TID} – p_{TMS}) / p_{TID}

Cross check: Z boson candidates

Z+ μ candidates before the cut on the p₋-balance:

Reasonable agreement between data and simulation.

IP and isolation for additional muons

Z+ μ candidates before the cut on the p_r-balance:

MC-data discrepancies, similar to those already reported by other groups.

IP and isolation cut eff ciencies

$Z+\mu$ candidates before the cut on the p₋-balance:

Impact parameter signif cance

Good agreement between MC and data.

MC underestimated at low islolation values.

Track isolation

Data 2015

7+h Shern

Z+c Sherna

ttbar Powheg/Pvt

1.4

1.6

1.8

Calorimeter isolation

MC underestimated around islolation=0.

MC-data discrepancies, similar to those already reported by other groups. Cut eff ciencies agree with those reported by other groups.

Momentum balance distribution

Applying cut on <u>pT-balance</u> in order to increase the Z+light jet contribution:

 $(p_{T,ID}^{}-p_{T,MS}^{})/p_{T,ID}^{} > 0.3$

 Cut value chosen such to give the highest ratio between Z+light jet and other backgrounds.

Reasonable agreement between data and simulation.

Cross check (II): Z boson candidates

Z+ μ candidates after the cut on the p₋-balance > 0.3:

Z+light jets comprise 66% of the total MC.

Good agreement between data and simulation, rather low statistics.

IP and isolation cuts on an additional muon

Only additional μ candidates after the cut on the p_T-balance > 0.3:

	All Z+µ Candidates (after pT- balance)	Only TopoC20/pT <0.3	Only TrackC30/pT <0.15	Only d0sig <3.5	All cuts
Data	441	71 (0.16)	224 (0.51)	398 (0.90)	47 (0.11)
Total MC	418 ± 46	32 ± 11 (0.08 ± 0.03)	148 ± 28 (0.35 ± 0.08)	388 ± 45 (0.93 ± 0.15)	25 ± 10 (0.06 ± 0.02)
Z + light jets	274 ± 43	11 ± 10	91 ± 25	273 ± 42	11 ± 9
Z + c-jets	81 ± 15	11 ± 5	28 ± 10	70 ± 14	5 ± 4
Z + b-jets	54 ± 9	8±3	26 ± 6	38 ± 8	7 ± 3
Top Quark	7 ± 1	0.6 ± 0.3	1.1 ± 0.4	4.8 ± 0.9	0.08 ± 0.06
WZ	1.7 ± 0.2	1.4 ± 0.2	1.6 ± 0.2	1.6 ± 0.2	1.4 ± 0.2
ZZ	0.24 ± 0.04	0.19 ± 0.04	0.22 ± 0.04	0.23 ± 0.04	0.18 ± 0.03

Impact parameter signif cance

Additional μ candidates after the cut on the p₁-balance > 0.3:

Good agreement between data and simulation, poor MC statistics.

Track isolation

Additional μ candidates after the cut on the p₁-balance > 0.3:

Eff ciency in data larger by a factor of \sim two at the nominal cut value of 0.15 . => Corresponds to $\sim 2\sigma$, poor MC statistics.

Calorimeter isolation

Additional μ candidates after the cut on the p₁-balance > 0.3:

Eff ciency in data larger by a factor of ~1.5 at the nominal cut value of 0.3 . => Corresponds to ~2 σ , poor MC statistics.

Summary

- Transverse momentum balance of the combined muons in Z+µ events used as a handle to enhance the relative contribution from π/K-muons (from original 17% to 66%).
- Eff ciency of the impact parameter signif cance and isolation cuts on muons studied in these enriched samples.
- Discrepancy between data and MC observed in distributions of isolation variables.
 Similar behaviour as in samples without the p₁-balance cut.
- Measurement limited by the low data and MC statistics.
 - > Next: increase data statistics to 2 fb⁻¹ with latest GRLs.
 > Next: analyse the mc15b as soon as available.