

Comparision

9th VXD Belle II Workshop 13-15 Jan. 2016, Valencia Spain

Results

Serializer Bug

germic@physik.uni-bonn.de

Serializer Bug

- Mistake made during extracting and simulating the layout with all process corners
- Serializer works, but VCC and/or GCK have to be adjusted:
 - GCK= 80 MHz \rightarrow VCC = 1.6V (works but should not be applied for a long time)
 - GCK= 60 MHz \rightarrow VCC = 1.4V (ok)
- Manufacturer test data → wafer batch has "slow NMOS" (too high threshold)

PARAMETER	BY LOT:	SPEC LO	SPEC HI	MIN	MAX	MEAN	STD DEV
VT1_N4	(N/.3/.06/1)	0.300	0.490	0.368	0.490	0.423	0.029
Isof_N4	(N/.3/.06/1)	-1.400E-07	0.000	-8.958E-10	-3.833E-11	-2.339E-10	2.063E-10
Isat N4	(N/.3/.06/1)	0.491	0.735	0.547	0.673	0.593	0.031

Digital checks for DHPT 1.1:

Jtag communication DHE & DHPT

Memory tests

All digital tests passed

Link established (down to VDD 1.25V !unsensed!)

Results LVDS RX / IO buffer delay

germic@physik.uni-bonn.de

DCD – DHPT Interface Block Diagram

8 links with 8 data + 2 offsets bits each ADC sample rate = 10MHz 32 ADCs per link → 320 Mbps

GCK (80 MHz)

Duty cycle distortion

- universität**bonn**
- Duty cycle distortion was overlooked during DHPT 1.0 sign-off

Delay Element Modification

• Custom delay elements made out of identical inverters

All corners covers 3.125 ns (←320 MHz).

Max. delay time with extracted model

universitätbonn

Results

DHPT 1.0: Duty cycle distortion of signal presentEach inverter pairs introduces a duty cycle distortion

									4.0
di0-31	LSB 1 ADU	2 ADU	4 ADU	8 ADU	16 ADU	32 ADU	64 ADU	MSB +/-	- 3.6
h32-63									- 3.2
di64-95									- 2.8
lays ^{dh96-127}									- 2.4
Global De ^{dh128-159}									- 2.0 to
ch160-191									- 1.6 - 1.2
dh192-223									- 0.8
dh224-255									- 0.4

Delay scan - W18 3 - asicpair: 1

Local Delays

germic@physik.uni-bonn.de

0.0

DHPT 1.0: Duty cycle distortion of signal presentEach inverter pairs introduces a duty cycle distortion

Local Delays

DHPT 1.1: No duty cycle distortion of signal present

Local Delays

0.0

DHPT 1.1: No duty cycle distortion of signal present

Local Delays

Results Serial Link (CML Driver)

germic@physik.uni-bonn.de

germic@physik.uni-bonn.de

23

<u>CML driver</u> Eye diagram measurements

<u>CML driver</u> Eye diagram measurements

<u>DHE</u> specification

From Virtex-6 User Guide

Table 4-26: RX Margin Analysis Ports

Port	Dir	Clock Domain	Description
RXDATA[31:0]	Out	RXUSRCLK2	The user needs to detect data errors on RXDATA in order to monitor the bit error rate of the link.
DFEEYEDACMON[4:0]	Out	RXUSRCLK2	Average vertical eye height (voltage domain) used by the DFE as an optimization criterion. 11111: Indicates approximately 200 mV _{PPD} of internal eye opening.

5bit value (0-31) for the vertical opening

From Virtex-6 FPGA Data Sheet: DC and Switching Characteristics

Table 17: GTX Transceiver DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
DV _{PPIN}	Differential peak-to-peak input	External AC coupled \leq 4.25 Gb/s	125	-	2000	mV
	voltage	External AC coupled > 4.25 Gb/s	175	-	2000	mV
		B.B. I. I.				

Min 125mV vertical opening

<u>CML driver</u>

Scan over parameter space IBIAS, IBIASD and pl1_cml_dly no receiver equalizing

Examples for $pll_cml_dly = 0$ and GCK = 62.50 MHz

<u>CML driver</u>

Scan over parameter space *IBIAS*, *IBIASD* and *pll_cml_dly* no receiver equalizing

Examples for $pll_cml_dly = 0$ and GCK = 62.50 MHz

<u>CML driver</u>

Scan over parameter space IBIAS, IBIASD and pl1_cml_dly no receiver equalizing

Examples for $pll_cml_dly = 0$ and GCK = 76.23 MHz

<u>CML driver</u>

Scan over parameter space *IBIAS*, *IBIASD* and *pl1_cml_dly* no receiver equalizing

Examples for $pll_cml_dly = 0$ and GCK = 76.23 MHz

X:Time

600ps

0.4

Improvement of the design achieved:

- a) Resolvment of the Serializer Bug
- b) IO Buffer delay do not suffer from duty cycle distortion
- c) Slight improvement of the CML driver

The diviation of the CML driver performance with respect to simulation vs real measurement needs to be investigated in more detail

Tests and Measurements prove that the DHPT 1.1 is in a very good shape for the final experiment.

DHPT 1.1

Production

- Tape-out: September 9, 2015
- Delivery (100 bumped samples): November 14, 2015

Changes from DHPT 1.0 to DHPT 1.1

- DCD DHPT Interface
 - Improved data receiver pads (no hysteresis, reduced input capacitance)
 - New delay elements (improved duty cycle balance)
- Serial Data Link
 - New Serializer (fix of the timing bug)
 - Improvement of the CML driver (reduction of parasitic resistances)
- → Digital part did not change (data processing, configuration etc.)

- Decision for DHPT 1.1 as the production candidate by February (?)
- Then: Order of 9 additional wafers (1000 chips in total)
- Two new needle cards for probe station testing currently being produced (HTT)
- → Estimated testing throughput: ~50 chips per week

If a further DHPT re-design should be unavoidable (for example: Gated-mode operation not yet tested) a DHPT 1.2 with changes in the digital part will be designed and submitted.

- One month re-design (digital synthesis)
- Two months production
- → ~3 months delay in the delivery of chips for PXD production

Thank you

Changes from DHPT 1.0 to DHPT 1.1

VXD Workshop, Valencia Jan 13-15, 2016

DHPT 1.1

Production

- Tape-out: September 9, 2015
- Delivery (100 bumped samples): November 14, 2015

Changes from DHPT 1.0 to DHPT 1.1

- DCD DHPT Interface
 - Improved data receiver pads (no hysteresis, reduced input capacitance)
 - New delay elements (improved duty cycle balance)
- Serial Data Link
 - New Serializer (fix of the timing bug)
 - Improvement of the CML driver (reduction of parasitic resistances)
- → Digital part did not change (data processing, configuration etc.)

- Decision for DHPT 1.1 as the production candidate by February (?)
- Then: Order of 9 additional wafers (1000 chips in total)
- Two new needle cards for probe station testing currently being produced (HTT)
- → Estimated testing throughput: ~50 chips per week

If a further DHPT re-design should be unavoidable (for example: Gated-mode operation not yet tested) a DHPT 1.2 with changes in the digital part will be designed and submitted.

- One month re-design (digital synthesis)
- Two months production
- → ~3 months delay in the delivery of chips for PXD production

DCD- DHPT INTERFACE

DCD – DHPT Interface Block Diagram

8 links with 8 data + 2 offsets bits each ADC sample rate = 10MHz 32 ADCs per link → 320 Mbps

GCK (80 MHz)

DCD – DHPT Data Transmission Schematic Details

Core driver (NMOS switches only)

universität**bonn**

DCD output reference voltage generation

Data Link Synchronization

• DCD can produce a simple test pattern for synchronization of the data links

		Time (clock period) ≙ADC channel																															
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
B i	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
t	3	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
i i	4	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
n	5	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
е	6	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	7	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Data Line Waveform Analysis

universität**bonn**

All Bit lines of one Link

DCD_VREF external Control & Measurement

Measurement Artefacts

DCD_VREF - GND

DCD output driver

- Schematic level simulation
 - capacitive load (C_{out}=3..7pF)

 Rise-/fall time extraction from Vref/deltaT scans

Interface Issues

- Synchronization of data line critical
 - Little contingency for delay settings
 - Sensitive against TID
- Distortion of the duty cycle
 - Delay elements on DHPT
 - Hysteresis of the DHPT differential receiver (plus asymmetric rise and fall times of the DCD driver)
- Slow signals
 - Underestimated parasitic capacitance of wiring and pads
 - DCD driver output levels not adjustable and drive strength asymmetric

Design Changes

See next chapters

- Fix duty cycle distortion
 - Symmetric delay elements on DHPT inputs
 - DHPT differential receiver \rightarrow remove hysteresis
- Make signal faster
 - − Reduce parasitic capacitance of the DHPT input pads ($C_{PAD} \simeq 3 \text{ pF}$ dominated by ESD protection) → analysis/simulation started, pad layout change in progress
 - − DCD output driver \rightarrow Increase drive strength, make programmable (see Ivan's talk)
 - Changes of routing on PXD module ? (estimated $\rm C_{line}~\simeq 1 pF)$ TBD

Known Issues & Design Changes (DHPT 1.0 -> DHPT 1.1)

	🖬 DesignResourcesASICRevie X 🗐 PXD ASICs Planner 2015 X 😣 Google+ X 🍥 PXD ASIC review pre-meeti X +												
^ ((https://docs. goog l	e.com/spreadsheets/d/10VASA4uVWEmoNZSZnSXND	2uCe2bCWhkqrnfIKvhg_g/edit#gid=0 ⊽ C ^e	Suchen		❷ 🕹 ☆ 自	=					
	File Edit View Insert Format Data Tools Add-ons Help All changes saved in Drive												
	ē K	Ξ 🛄 🍸 - Σ -	÷										
f×													
	Α	В	с	D	E	F	G						
1		·	Known Issues	& Design Changes (DHPT 1.0 -> D	OHPT 1.1)			-					
2													
3	Item #	Block	Description	Critical points, comments	Class/Priority	Implementation Status	Measurements / simulations needed						
4	1	Serializer	Error in load strobe generation logic	check all FF setup & hold timing	bug/high	implemented/done	no						
5	2	CML driver	Increase output amplitude by reducing parasitics optimize current mirrors and drive strenght	layout parasitic resistance, current source saturation Uds_sat	enhancement/med	implemented/done	no						
6	3	Delay elements	Duty cycle distortion	add dummy loads for intermediate nodes	bug/med	implemented/done	no						
7	4	Data Receiver	Reduce hysteresis in the DCD data differential receivers		enhancement/med	implemented/done	simulate with DCD output stage						
8	4a	Data Receiver	Simulate offset voltage dispersion	Increase input transistor size if offset dispersion would need to be reduced	enhancement/med	implemented/done	MC simulation						
9	4b	Data Receiver	Extract input pad capacitance		no issue yet	implemented/done	QRC extraction						
10	5	Core	Include chip ID in raw data header		low	not considered yet							
11	6	Core	Gated mode operation	more system tests pending	no issue yet	not considered yet	Hybrid 5 & EMCM system tests						
12	7	Core	High occupancy data processing, common mode processing	more system tests pending	no issue yet	not considered yet	Hybrid 5 & EMCM system tests						
13	8	JTAG	New IDCODE	LSB must be "1"	enhancement/med	pending							
14	9	LVDS Receiver Bias	Implement self-bias parallel to DAC bias	check default bias setting	enhancement/med	pending							
15	10	General	extrapolate SEU x-section for thermal neutrons			done	literature search						
16	•							•					
	+ =	DHPT 1.1	▼ DCDBpp v5 ▼ SWB18 v3 ▼		Status: 7.7.20	015 🔮							

SERIALIZER

DHPT 1.0

PLL + SER Block Diagram

Load Strobe Generation (Counter)

Serializer Bug

- Mistake made during extracting and simulating the layout with all process corners
- Serializer works, but VCC and/or GCK have to be adjusted:
 - GCK= 80 MHz \rightarrow VCC = 1.6V (works but should not be applied for a long time)
 - GCK= 60 MHz \rightarrow VCC = 1.4V (ok)
- Manufacturer test data → wafer batch has "slow NMOS" (too high threshold)

PARAMETER	BY LOT:	SPEC LO	SPEC HI	MIN	MAX	MEAN	STD DEV
VT1_N4	(N/.3/.06/1)	0.300	0.490	0.368	0.490	0.423	0.029
Isof_N4	(N/.3/.06/1)	-1.400E-07	0.000	-8.958E-10	-3.833E-11	-2.339E-10	2.063E-10
Isat N4	(N/.3/.06/1)	0.491	0.735	0.547	0.673	0.593	0.031

DHPT 1.0 Serializer Simulation

Timing of "load" is not provided correctly, except fast-fast corner.

Design Fix in the Counter Circuit

Serializer Simulation with Modification (DHPT 1.1) universitätbonn

Correct pattern can be obtained with all corners.

New Serializer Load Strobe Generator

RC-extracted simulation with corners(tt ss ff)

CML DRIVER

DHPT 1.0

CML DRIVER

DHPT 1.0

Driver Schematic

DHPT 0.1 – Test setup

1000

- Linear function of bias current • (IBIAS_DRIVER)
- $IBIAS_DRIVER \approx I_DVDD$ ۲
- Preemphasis off • (IBIASD Driver = 0)
- /out (mV) Effective output resistance: 49.1 ۲ Ohm
- DC output resistance: 55 Ohm ۲
- \rightarrow ~3.5 Ohm Series resistance ۲ (chip wiring, bond wire, PCB trace)

Output amplitude vs. output stage bias current

Output resistance Ok

Main Output Current Mirror

Boost Output Current Mirror

- IBIASD_DRIVER current mirror
- Design value
 IBIASD_DRIVER/Ibiasd = 2
- Fair linearity
- Drive current limited to 6.12 mA
 → Vboost_{max} ~300mV

 Enhancement: Make boost current sink M8 stronger

Delay Settings

Setting SW[1:0]	Pulse Width [ps]
11	130
01	300
10	470
00	615

→ ~170 ps per delay buffer

800 MHz clock, different delay settings

Signal Integrity Characterization

- 1.6 Gbps LFSR-8
- 30 cm kapton cable
 + 20m AWG26
 twisted pair cable

X-ray Irradiation

- TSMC 65nm TID tolerance:
 - V_{THR} shift (wide pMOS and nMOS only)
 - PLL + Gbit link performance
- Up to 100 Mrad (60keV X-ray tube, Karlsruhe)
- Dose rates: ~300 kRad/h (initial) → ~2Mrad/h (end)
- Annealing after each step: 80°C for 100 min

No TID induced degradiation observed up to 100 Mrad

Voltage threshold shift vs absorbed Dose

06.05.2015, T.Kishishita

21.04.2015, T.Kishishita

DELAY ELEMENTS

DHPT 1.0

- Programmable delay lines made from std. cell delay elements (dual inverters)
- Inverter have usually unequal propagation delays for rising and falling edges (Asymmetry of PMOS-NMOS drive strength, process corners, W/L...)
- The std. cell delay elements consist of alternating no-equal sized inverters

 \rightarrow The difference in t_{pd} for rising and falling edges for inverter A and B is <u>different</u>!

→ Duty cycle distortion increases (accumulates) with the number of delay elements used, i.e. the programmed delay time

Delay Element Issues cont.

- universität**bonn**
- If all inverters in the delay chain are equal (and the number of inverters is even), no duty cycle distortion occurs (differences in rising and falling edge propagation delay cancel out)

→ Implemented new, custom made delays based on identical inverters

Duty cycle distortion

• Duty cycle distortion was overlooked during DHPT 1.0 sign-off

Delay Element Modification

• Custom delay elements made out of identical inverters

All corners covers 3.125 ns (←320 MHz).

Max. delay time with extracted model

DCD DATA RECEIVER

DHPT 1.0

DCD Data Receiver

 Single ended DCD data receivers based on LVDS receivers → low voltage single ended signaling (LVSE)

Duty cycle distortion

• Duty cycle distortion was overlooked during DHPT 1.0 sign-off

LVDS Receiver (DHPT 1.0)

25.03.2015, T.Kishishita

LVDS Receiver Design Modification

FET sizes and layout modified to reduce hysteresis (~50% of the current DHPT1.0 design).

Hysteresis values with extracted model

