Cosmic Ray Trigger Status

Rachid Ayad
University of Tabuk
$14^{\text {th }}$ January 2016

1) basf 2 cosmic Rays simulation to set scintillators size
2) Mechanical Frame design
3) Overal schedule/plan until cosmic tests on Fall 2017
4) Bench Cosmic setup at Tabuk
5) Conclusion

Setup (simple)

Basf2 simulation with just VXD

Scintillator 1

VXD

Scintillator 2

Reminder

- With Cosmics (i.e. Belle default) generator transverse (x) hit distribution on scintillator plane to be much broader w.r.t. longitudinal (z)

Generator validation

- We switched to CRY generator, recently included in basf2
- After some testing we found reasonable settings
- $\operatorname{Atan}(\mathrm{mcPx} / \mathrm{mcPy}), \operatorname{Atan}(\mathrm{mcPz} / \mathrm{mcPy}) \rightarrow$ we fit by $\mathrm{a}+\mathrm{b}^{*} \cos (\mathrm{x})+\mathrm{c}^{*} \cos ^{2}(\mathrm{x})$

Generator validation

Belle II

- Effect of change in generator can clearly be seen on the hit distribution on scintillator plane

Cosmics, all tracks
Position on the XZ plane of the upper scintillator

Cosmics, nPXD_hits>1
Position on the $X Z$ plane of the upper scintillator

CRY, $\mathrm{E}>2 \mathrm{GeV}$, all tracks
Position on the XZ plane of the lower scintillator

CRY, $\mathrm{E}>2 \mathrm{GeV}$, nPXD_hits>1
Position on the XZ plane of the upper scintillator

CRY: the 2 GeV cut-off

- $\mathrm{E}>2 \mathrm{GeV}$ cut-off is used to remove "soft" component of cosmic rays which results in steeper distribution
- 2 GeV cut is assumed in the following if not otherwise specified

Generator comparison

- 2 GeV Cut has no big effect on efficiency

- Fit with $7^{\text {th }}$ order poly

Efficiency vs Z, Positive

Effect of Installation height

- Until now we have always assumed $\mathrm{h}=15 \mathrm{~cm}$
- Switching to $\mathrm{h} \rightarrow 30 \mathrm{~cm}$

All tracks
 Position on the XZ plane of the lower scintillator $h=15 \mathrm{~cm}$

Position on the $X Z$ plane of the lower scintillator $h_{1}=30 \mathrm{~cm}$

Installation height

- Distribution on y-z plane
nPXD_hits>1

Position on the XY plane

All tracks
Position on the XY plane

rosition on the \boldsymbol{x} y plane

Installation height

- $\mathrm{h}=15,20,25,30,35$
- nPXDHits > 1

Efficiency vs X

Efficiency vs Z, Positive

Efficiency vs Z, Negative

- Similar to what we have done for PXD we can optimize for SVD
- $\mathrm{h}=15,20,25,30,35$

Efficiency vs Z, Positive

Efficiency vs Z, Negative

Frame Design(for B1 room)

visum:Ion

Only 6 scint pieces 10 cm width (in z)

Overall Plan

Task	2016													2017												2018			
	1	2	3	4		5		7	8	9	10	11	12		1	23	4	5	6	7	8	9	10	11	12	1	2	4	5
Simulation																													
Design																													
Mechanics																													
PMs																													
Scintillators																													
Electronics																													
Assembly Tabuk																													
Tests Tabuk																													
Shipped to KEK																													
Tests at KEK																													
Analysis Code																													
Data Analysis																													
Publish																													

Cosmic Setup at Tabuk (Final Setup)

Shelf to mount Scintillator 1 Shelf to mount Alibava Tracker Plane 1 Shelf to mount the PXD module Shelf to mount Alibava Tracker Plane 2 Shelf to mount Scintillator 2 Shelf to mount Alibava Trigger Card (TC)

Trigger: Two scintillators

A 10cmx 1 cmx 0.5 cm scintillator two crossed scints so
A more developed frame with Micro-step moving table will be built by ALIBAVA a $1 \times 1 \mathrm{~cm}^{\wedge} 2$ cross section to match the Alibava Tracker sensible area

A shelf with Alibava Plane detector installed

Coincidence on two Alibava Planes with Beta source

Scintillators coincidence: Muon

PXD setup and Software

Power Cable from Breakotu Board

SC and HS Ethernet Cables to computer

PXD testing setup available at Tabuk (PXD module cured at MPI from cooling leak)
Slow Control powering ASICs and DEPFET
SC (PSs) program works fine and stab

All items in the Rack including the PC

Outlook

- New generator shows good performance, strange x-z asymmetry has disappeared.
- Huge effect from installation height \rightarrow nearing scintillator planes, even few cm, would significantly increase efficiency
- Segmenting scitillators? As we need them collected at the cemtral the central region ...
- We are now at work to implement the segmented geometry \rightarrow it is important to agree about installation height to test the effect of spacing. This will be showed in next B2GM to close this issue and design the frame at MPP.

Backups

$\xrightarrow{\text { Geometry }}$

Geometry

Belle II

Generator comparison

- Generator change has no big effect on efficiency as $f(x)$
- Slower rise on z

