X/X_0 imaging of Belle II modules

Ulf Stolzenberg for the test beam team

University of Göttingen, II. Physikalisches Institut

January 14th 2016, 9th VXD Belle II Workshop

Image: A math a math

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

Conclusion

Measurements of SVD and PXD modules

Motivation

- Low material budget is an essential part of the belle II ladder development especially for PXD part
- $\bullet\,$ Mean material budget of PXD ladder \approx 0.1-0.2 %
- Small regions (i.e. bump bonds and capacitances) of highly increased material (worst case: 1%)
- Long term goal: Find out if tracking can be improved by using more detailed/accurate detector model based on X/X₀ measurements

Results in this talk

- X/X_0 Imaging of area near APV25 chips and cooling pipe
- X/X_0 Imaging of balcony, switchers and passives on the DEPFET modules

Ulf Stolzenberg for the test beam team

Image: A match a ma

Overview of X/X_0 data

DESY test beam campaign in november 2015

- X/X_0 measurements on two Belle II modules
- Large statistics at beam energy of 4 GeV

DEPFET Dummy Module

- Including a switcher and 4 capacitors in measurement region
- $\bullet\,$ Total of $\approx\,108\,$ mio tracks
- calibration for this data-set: 14 mio tracks

SVD Origami module

- 3 different measurement regions
- cooling pipe, APV25 chips etc visible
- Total of $\approx 26+98+29$ mio tracks

• • • • • • • • • • • •

Ulf Stolzenberg for the test beam team

X/X_0 Measurements

Basic idea

Reconstruct kink angle distributions on central plane \rightarrow width of distribution depends on X/X_0 .

Definition of λ

- Finite angle resolution on target plane \rightarrow gaussian with standard deviation of $\sigma_{\rm err}$ as resolution function on target
- Expected value $\sigma_{\rm err}$ is affected by systematical errors (slightly wrong m26 resolution, additional multiple scattering within telescope, etc)
- Introduce λ factor: calibrated angle reconstruction error $\sigma^*_{
 m err} = \lambda \cdot \sigma_{
 m err}$, λ should be close to 1.0

X/X_0 Measurements

First step: Calibration on metal grid with appropriate MSC model

• Reconstructed multiple scattering angle distribution given by

$$f_{\rm reco} = f_{\rm MSC}\left(\theta\right) * \frac{1}{\lambda \,\sigma_{\rm err} \,\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{\theta}{\lambda \,\sigma_{\rm err}}\right)^2\right)$$

- $\bullet~{\it f}_{\rm MSC}$ depends on many material and particle beam parameters
- Target with well known material profile allows λ calibration
- Find λ by simultaneous fit of reconstructed angle distributions

Second step: Measurement on materials

• Use optimal calibration factor in other X/X_0 measurements

Setup of telescope for SVD X_0 measurements

- EUDET telescope with 6 M26 planes (3 µm resolution per plane)
- Spacings chosen like this to keep the angle reco error $\sigma_{\rm err}$ small

Image: A mathematical states and a mathem

Setup of telescope for SVD X_0 measurements

- EUDET telescope with 6 M26 planes (3 μm resolution per plane)
- Spacings chosen like this to keep the angle reco error $\sigma_{\rm err}$ small

Image: Image:

Ulf Stolzenberg for the test beam team

Setup of telescope for SVD X_0 measurements

- EUDET telescope with 6 M26 planes (3 µm resolution per plane)
- Spacings chosen like this to keep the angle reco error $\sigma_{\rm err}$ small
- Measurements on 3x3 calibration metal grid and SVD Origami module

Image: A matrix and a matrix

Selection of measurement areas for calibration

Ulf Stolzenberg for the test beam team

University of Göttingen

 X/X_0 imaging of Belle II modules

SVD Calibration @ 4 GeV (HL model)

Calibration results SVD

- Simultaneous fit of 12 multiple scattering angle distributions
- Fit results: $\lambda = 1.171 \pm 0.003$

Image: A match a ma

Ulf Stolzenberg for the test beam team

SVD Calibration @ 4 GeV (HL model)

Calibration results SVD

- Simultaneous fit of 12 multiple scattering angle distributions
- Fit results: $\lambda = 1.171 \pm 0.003$
- rather large value $(\lambda \approx 1.1 \text{ typical value} \ \text{at DESY})$

Fitted kink angle distributions

Image: A match a ma

University of Göttingen

Ulf Stolzenberg for the test beam team

visible structures

200

Ulf Stolzenberg for the test beam team

 X/X_0 imaging of Belle II modules

visible structures

cooling pipe,

200

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

University of Göttingen

visible structures

cooling pipe, APV25 chip,

206

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

University of Göttingen

visible structures

cooling pipe, APV25 chip, keratherm,

1000

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

University of Göttingen

visible structures

cooling pipe, APV25 chip, keratherm, plastic clamp,

296

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

SVD X/X_0 image

visible structures

cooling pipe, APV25 chip, keratherm, plastic clamp, carbon fiber plies in edges of support structure on backside,

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

visible structures

cooling pipe, APV25 chip, keratherm, plastic clamp, carbon fiber plies in edges of support structure on backside, metallizations (vias) and

Ulf Stolzenberg for the test beam team

 X/X_0 imaging of Belle II modules

visible structures

cooling pipe, APV25 chip, keratherm, plastic clamp, carbon fiber plies in edges of support structure on backside, metallizations (vias) and part of a capacity

Ulf Stolzenberg for the test beam team

 X/X_0 imaging of Belle II modules

Measurements of structures on the SVD

• Distance between the center of the beam pipe and the edge of support structure ≈ 5.5 mm

• Mechanically measured: \approx 5.7 mm

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

Measurements of structures on the SVD

• Silicon sensor area: $(X/X_0)_{\text{meas.}} = (0.544 \pm 0.002)\%$ • Expected: 320 Si (0.342 %), Origami flex ($\approx 0.188\%$), additional material budget due to glue between layers $\rightarrow X/X_0 \approx 0.530\%$

Ulf Stolzenberg for the test beam team

Conclusion

Measurements of structures on the SVD

• Cooling pipe: $(X/X_0)_{\text{meas.}} = (2.07 \pm 0.02)\%$ in the center Substract material from sensor and origami: $(X/X_0)_{pipe} = (1.53 \pm 0.02)\%$ • stainless steel \rightarrow wall thickness d=(134±2) μ m, \approx 100 μ m expected

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

Measurements of structures on the SVD

• APV25:
$$(X/X_0)_{meas.} = (0.713 \pm 0.002)$$

 \rightarrow only APV: $(X/X_0)_{APV} = (0.169 \pm 0.003)\%$
• Expected: 100 μ m Silicon and $\approx 9\mu$ m of Copper $\rightarrow \approx 0.17\%$

Ulf Stolzenberg for the test beam team

 X/X_0 imaging of Belle II modules

Measurements of structures on the SVD

- Distance between two neighbouring APVs ≈ 1 mm (expected 1.05mm)
- Width of APVs \approx 7 mm (expected 7.1 mm)
- Width of plastic clamp ≈ 2 mm

Ulf Stolzenberg for the test beam team

 X/X_0 imaging of Belle II modules

Conclusion

Setup of telescope for PXD X_0 measurements

schematic setup of telescope

Ulf Stolzenberg for the test beam team

 X/X_0 imaging of Belle II modules

PXD X/X_0 image

X0 image (4GeV,30 μm^2 pixels)

visible structures

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

University of Göttingen

PXD X/X_0 image

visible structures

Switcher,

 $\mathfrak{I} \mathfrak{A} \mathfrak{A}$

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

University of Göttingen

PXD X/X_0 image

visible structures

Switcher, bump bonds,

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

University of Göttingen

PXD X/X_0 image

visible structures

Switcher, bump bonds, balcony with grooves,

2.40

Ulf Stolzenberg for the test beam team

 X/X_0 imaging of Belle II modules

PXD X/X_0 image

visible structures

Switcher, bump bonds, balcony with grooves, capacities,

Ulf Stolzenberg for the test beam team

 X/X_0 imaging of Belle II modules

University of Göttingen

PXD X/X_0 image

visible structures

Switcher, bump bonds, balcony with grooves, capacities, sensitive area and

200

Ulf Stolzenberg for the test beam team

 X/X_0 imaging of Belle II modules

University of Göttingen

PXD X/X_0 image

visible structures

Switcher, bump bonds, balcony with grooves, capacities, sensitive area and air

200

Ulf Stolzenberg for the test beam team

 X/X_0 imaging of Belle II modules

University of Göttingen

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Measurement of structures on the PXD

Use these two radiation length profiles to calculate the X/X_0 value of the small capacity without the influence of the groove

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

Measurement of structures on the PXD

 X/X_0 profile of the small capacity shows peaks at the edges: soldering material. The radiation length of the capacity itself is approx. 1.4 - 1.5 %

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

University of Göttingen

< 4 **1** → 4

Image: A matrix and a matrix

Conclusion

Measurement of structures on the PXD

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

Image: Image:

Measurement of structures on the PXD

 X/X_0 peaks at the edges for the large capacity as well. The radiation length of the capacity itself is approx. 2.3 - 2.4 %

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

Conclusion and Outlook

Conclusion

- X/X₀ measurements on SVD and PXD modules mostly consistent with expected material budget
- Still large systematical effects, indicated by large calibration factor λ, main issues: (Target-) Alignment, especially z-alignment, M26 digital effects
- In the PXD case: Statistics large enough (more than 100 mio tracks) for 30 μm^2 pixels in X_0 image

Ulf Stolzenberg for the test beam team

Conclusion and Outlook

Outlook

- Simulation studies of target misalignment
- Comparison between the currently employed detector model and a more detailed one with respect to tracking → What is the effect on the tracking procedure, when averaging the material budget of small structures? Is this effect relevant?

Ulf Stolzenberg for the test beam team

Thank you!

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

University of Göttingen

Image: A math a math

nodules

Backup Slides

Ulf Stolzenberg for the test beam team

 X/X_0 imaging of Belle II modules

University of Göttingen

Aluminum grid

- 0.2 mm thick aluminum layers, with different hole configurations
- taped to metal plate within telescope arms
- increase of material budget by 0.22 % per hole

Reconstruction of MSC angles in a EUDET teleskop

- Reconstruct angles on the DEPFET
- Particle crosses sensor \rightarrow hits

Reconstruction of MSC angles in a EUDET teleskop

- Reconstruct angles on the DEPFET
- Particle crosses sensor \rightarrow hits
- Forward- backward Kalman Filter (KF) pair on hits
- hit on DEPFET not needed $\rightarrow X/X_0$ images
- Take MSC in air gaps into account

Ulf Stolzenberg for the test beam team

Reconstruction of MSC angles in a EUDET teleskop

- Reconstruct angles on the DEPFET
- Particle crosses sensor → hits
- Forward- backward Kalman Filter (KF) pair on hits
- hit on DEPFET not needed $\rightarrow X/X_0$ images
- Take MSC in air gaps into account
- θ_p calculated from (m_u, m_v)
- Reco error $\sigma_{\rm reco}$ from error propagation

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

Example of a reconstructed angle distribution

Composition of the Reco Distribution

Reconstructed MSC angle distribution is a convolution between the pure MSC angle distribution and a Gaussian noise distribution caused by the reconstruction errors

Ulf Stolzenberg for the test beam team

 X/X_0 imaging of Belle II modules

Selection of measurement areas

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

PXD Calibration @ 4 GeV (HL model)

Fitted kink angle distributions

PXD Calibration @ 4 GeV (HL model)

Image: A match a ma

University of Göttingen

Ulf Stolzenberg for the test beam team

Additional SVD measurements

Effects of Airex core material in the support rips on the backside: $(X/X_0)_{\text{meas.}} = 0.653 \pm 0.002\%$, only airex core: =((0.653-0.544)+0.003)%=(0.109+0.003)% $(\mathbf{X} | \mathbf{X}_{n})$ Ulf Stolzenberg for the test beam team University of Göttingen

 X/X_0 imaging of Belle II modules

Additional PXD measurements

Use these two radiation length profiles to calculate the X/X_0 value of the switcher chip without the influence of the grooves

 Ulf Stolzenberg for the test beam team
 University of Göttingen

 X/X₀ imaging of Belle II modules
 13/13

Additional PXD measurements

Switcher: $(X/X_0)_{meas.} = 0.220 \pm 0.004 \%$ Expected $\approx 300 \ \mu m$ of Silicon: $(X/X_0)_{Switcher} = 0.33\%$

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

Number of tracks per pixel

Number of tracks PXD image (4GeV,50 μm^2 pixels)

 Ulf Stolzenberg for the test beam team
 University of Göttingen

 X/X₀ imaging of Belle II modules
 13/13

Number of tracks per pixel

Number of tracks SVD image (4GeV,75 μm^2 pixels)

Ulf Stolzenberg for the test beam team X/X_0 imaging of Belle II modules

Ulf Stolzenberg for the test beam team

 X/X_0 imaging of Belle II modules

 Ulf Stolzenberg for the test beam team
 University of Göttingen

 X/X₀ imaging of Belle II modules
 13/13

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 → のへで

 Ulf Stolzenberg for the test beam team
 University of Göttingen

 X/X₀ imaging of Belle II modules
 13/13

13/13

Ulf Stolzenberg for the test beam team University of Göttingen X/X_0 imaging of Belle II modules

Full-sized images

Full-sized images

 X/X_0 imaging of Belle II modules

Full-sized images

 X/X_0 imaging of Belle II modules