Detection of Communication Errors from ADC Curves

and first Hybrid5.0.09 results

B. Schwenker P. Wieduwilt

- Universität Göttingen -

Hybrid5.0.09

Toggling bits in ADC curves

ADC curve (channel 0 some pair)

- :- Example ADC curve at optimized DCD Settings.
- :- Input currents in blue circle should yield Output codes in yellow circle.
- :- In reality: some fraction of readings, the output codes is shifted by $2^7=128$.
- :- The reason: toggling of most significant bit (MSB)

A model for toggling

ADC curve (channel 0 some pair)

Transmission of code 250 in channel 0:

	Ch 30	Ch 31	Ch 0		
Bit 0 (LSB)	?	?	0		
Bit 1	?	?	1		
Bit 2	?	?	0		
Bit 3	?	?	1		
Bit 4	?	?	1		
Bit 5	?	?	1		
Bit 6	?	?	1		
Bit 7 (MSB)	1	1	0		
	Channel1 pedestal	L sends with MSB	8bi for	8bit encoding for 250.	

set.

A model for toggling

ADC curve (channel 0 some pair)

	Ch 30	Ch 31	Ch 0	
Bit 0 (LSB)	?	?	0	
Bit 1	?	?	1	
Bit 2	?	?	0	
Bit 3	?	?	1	
Bit 4	?	?	1	
Bit 5	?	?	1	
Bit 6	?	?	1	
Bit 7 (MSB)	1	1	1	

For some readings the MSB toggles to 1.

A model for toggling

ADC curve (channel 0 some pair)

Ch 31

Ch 0

Ch 30

Bit 0 (LSB)	?	?	0	
Bit 1	?	?	1	
Bit 2	?	?	0	
Bit 3	?	?	1	
Bit 4	?	?	1	
Bit 5	?	?	1	
Bit 6	?	?	1	
Bit 7 (MSB)	1	1	1	

- \rightarrow In general: toggling can happen for all bits (0-7)
- \rightarrow toggling probability depends on previous bit value.
- → toggling probability depends on transitions on neighbor bits (cross talk)

For some readings the MSB toggles to 1.

Bit Error Recognition – DNL Method

- bit errors appear as negative valleys in DNL curve
- width of valley determined by affected bit n as 2ⁿ
- count number of valleys with widths 2ⁱ, i = 0,...,7
- define thresholds for number of valleys

Bit Error Recognition – Outliers

- check if there are ADU readings off of ADC curve
- per DAC define ADU code with max number of readings as curve reference
- check distances to all other ADU code readings for this DAC
- if distance = 2ⁱ, i = 3,...,7 found within a certain margin
 - \rightarrow toggling bit i

Bit Error Recognition – Bit0

- bit0 (LSB) error specific
- count occurances of even and odd ADU codes
- compute ration even/odd
- if ratio > 2 or ratio < 0.5
 - → bit0 (LSB) error

Results from H5.0.09 with DHPT1.1

All Channel Scan Statistic

good channels	181
channels with bit error	74*
channels with comparator error	1**
channels with dynamic range error	0
median LSB	131.94 nA/ADU

* includes miss-identified bit3 errors (see later)** comparator errors without concurrent bit error

settings:

IPSource:	90	En30 ON, En60 OFF, HighGain OFF		
IPSource2:	95	GCK: 76.23 MHz		
IFBPBias:	90			
		DHPT_Core:	1300 mV	
RefIn: Amplow [.]	1050 mV 400 mV	DHPT_IO:	1900 mV	
, inplom		DCD_DVDD:	1900 mV	

Bit Error Distribution (DNL test)

Bit Error Map (DNL test)

bit error (dacifbpbias=90, dacipsource=90, dacipsource2=95, dcd-amplow=400.0, dcd-refin=1050.0)

Bit1 Errors

Two examples of very bad cases (problems in multiple bits)

el148_outliers_bit[-5, 3, -6, -3, 5, 6]_ADU0_dist0_bit1_clamping_codes_unknown_single_clamping_ADU_25_INLpp_57.18_noise_mear nnel084_outliers_bit[3, -3, -6, 6]_ADU0_dist0_bit2_clamping_codes_unknown_single_clamping_ADU_131_INLpp_13.23_noise_mean_i

Bit Error Distribution (outliers test)

Real Bit3 Errors

miss-identified Bit3 Errors/ Broad Clamping

channel076___outliers_bit[3, -3]_ADU0_dist0

typically miss-identified as bit3 error

probably ADC problem similar to clamping codes

Bit Error Map (outliers test)

outlier bits (dacifbpbias=90, dacipsource=90, dacipsource2=95, dcd-amplow=400.0, dcd-refin=1050.0)

 $^{-1}$

Median Noise vs Channel

noise_median (dacifbpbias=90, dacipsource=90, dacipsource2=95, dcd-amplow=400.0, dcd-refin=1050.0)

Summary

- Robust method implemented to detect errors in DCD-DHPT communication.
- Method gives detailed info about errors:
 - Which bit line causes trouble?
 - How frequently does it happen (severity)?
 - Can detect cross talk between lines.
- Code already in use to study new Hybrid 5 boards.
 - Also applicably to big PXD9 pilots.
- Summary data for different systems collected in online repo.