

Status of DATCON

Bruno Deschamps, Christian Wessel, J. Dingfelder, C. Marinas University of Bonn

Connection topology of the DATCON

deschamps@physik.uni-bonn.de

universität**bonn**

AMC cards

- AMC v3.1
 - Used as concentrator
 - 15 produced by IHEP-Bejing
- DHE v3
 - Used as tracking unit
 - 3 received and recently tested by Igor
- SFP extension boards
 - Designed by Igor
 - 5 received and tested

deschamps@physik.uni-bonn.de

New backplane design

ConcentratorTrackingSFPAMCsAMCext.(AMCv3)(DHHC)card

----- opt. fibre

- DATCON backplane
- optional (ONSEN) Daisy-Chain

SFP extension card

Chassis

- Backplane designed by Pentair
- MTCA format
- Expected delivery : March
- 2 for DATCON, 2 for ONSEN
 1 for backup
- JTAG connection problem solved

deschamps@physik.uni-bonn.de

- Default system for test beam → try to be as close as possible to final system
 - 2 DHE for the tracking on n and p side
 - 6 AMCs v3.1
 - 2 MTCA crate equipped with new backplane
 - 2 SFP extension boards
- If new crates don't arrive on time
 - Need to reduce to 3 layer tracking
 - P and n side tracking on only one DHE

- Use of the Hough transformation
- $d = x \cdot \cos(\theta) + y \cdot \sin(\theta)$
- Can only be applied for straight line (as previously implemented on FPGA)
- For circular track a conformal transformation is needed

- Hough transformation
- Works directly on circle
- Conformal mapping included

$$\rho = \frac{2 \cdot \sin(\varphi - \varphi_0)}{r}$$

Implementation with LUT

deschamps@physik.uni-bonn.de

FPGA implementation for phi

deschamps@physik.uni-bonn.de

For phi

- Sensor position defined by angle, radius and shift
- Only one sensor of each layer stored
- Each strip angle and radius can be returned from reference sensor

deschamps@physik.uni-bonn.de

- For test beam
 - N strip only defined on y-z axis
 - Strip position, pitch and sensor position are known
 - No LUT needed
 - Not too much resource consuming function returns exact coordinate
- For full geometry x-y-z, solution has to be investigated

deschamps@physik.uni-bonn.de

Sector finder

Intersection finder

BASF2 Simulation Results

- Setup:
 - Electrons only
 - p ∈ [0 GeV, 3 GeV]
 - θ ∈ [17°, 150°]
 - $\phi \in$ [-180°, 180°]
 - 256 sectors for ϕ (yields ϕ and curvature of the track) and 64 sectors for θ (yields θ of the track)
 - 3 layer reconstruction

deschamps@physik.uni-bonn.de

14

φ [deg]

Efficiency vs pT

ROI calculation

MPH resolution in phi and theta

deschamps@physik.uni-bonn.de

Track finder and DATCON summary

- The concentrators do not send coordinate anymore but strip ID
- The two methods work, tested on simulations
- Circle finding method on ϕ
- Straight line finding method on $\boldsymbol{\theta}$
- Works better for high p_T
- Problems with ROI calculation, esp. for positively charged particles
- Next steps
 - Prepare test beam (simulation and FPGA)
 - Make extrapolation work for positively charged particles
 - Improve the tracking and extrapolation algorithm (e.g. hits at detector edge only produce partial ROI)
 - Extrapolation on FPGA
 - Monitoring of the boards on EPICS

deschamps@physik.uni-bonn.de

Thank you

BACKUP

Radius of MCParticle Track

Radius of Hough-Track

Radius of Hough-Track

Radius of Hough-Track

