# Tracking Performances with MC-free TrackMerging 

## Giulia Casarosa

INFN - Sezione di Pisa


Tracking Meeting ~ November, $13{ }^{\text {rd }} 2015$

## History

$\Rightarrow$ Before committing the changes to switch from MC-assisted to MC-free Track Merging, the following final test was done:

- install the head (r22944)
- update the VXDCDCTrackMerger Module
- substitute the reconstruction.py script, relevant part:

```
# track merging
    if use_vxd and use_cdc:
        vxd_tracklets = 'VXDGFTracks'
        cdc_tracklets = 'CDCGFTracks'
# track fitting
        vXDtrackFitter = register_module('GenFitter')
        vxDtrackFitter.param('GFTrackCandidatesCoWame', vxd_trackcands)
        VXDtrackFitter.param('BuildBelle2Tracks', False)
        vXDtrackFitter.param("PDGCodes", [211])
        vXDtrackFitter.param('GFTracksCoWame', vxd_tracklets)
    CDCtrackFitter = register_module('GenFitter')
        CDCtrackFitter.param('GFTrackCandidatesCoWame', cdc_trackcands)
        CDCtrackFitter.param('BuildBelle2Tracks', False)
        CDCtrackFitter.param("PDGCodes", [211])
        CDCtrackFitter.param('GFTracksCoWame', cdc_tracklets)
    vxd_cdcTracksMerger = register_module('VXDCDCTrackMerger')
    vxd_cdcTracksMerger_param = {
        vXDGFTrackCandsCoUName ': vxd_trackcands,
        VXDGFTracksCo Name': vxd_tracklets,
        CDCGFTrackCandsCoUame ': cdc_trackcands,
        CDCGFTracksColName': cdc_tracklets,
        're\MatchedTracks': 'MatchedTracksIdx',
        chi2_max': 100,
        recover' : 1
        }
    vxd_cdcTracksMerger.param(vxd_cdcTracksMerger_param)
    path.add_module(VXDtrackFitter)
    path.add_module(CDCtrackFitter)
    path.add_module(vxd_cdcTracksMerger)
    track_merger = register_module('MCTrackCandCombiner')
    track_merger.paran('CDCTrackCandidatesCoWame', cdc_trackcands)
    track_merger.paran('VXDTrackCandidatesCoWame', vxd_trackcands)
    path.add_module(track_merger)
```


## Integrated Efficiency

$\Rightarrow$ this study is based on a sample of $10 \mathrm{kY}(4 \mathrm{~S})$ generic decays reconstructed with the official standard reconstruction with the addition of the MC information

| definition | in \% | release-00-05-03 | r22944* |
| :---: | :---: | :---: | :---: |
| \#MCParticles with at least one associated Track | physical efficiency | $85.6 \pm 0.1$ | $84.8 \pm 0.1$ |
| \# MCParticles |  |  |  |
| \#MCTrackCands with at least one associated Track | geom. accept. \& det. ineff. factored out | $94.0 \pm 0.1$ | $93.3 \pm 0.1$ |
| \#MCTrackCands |  |  |  |
| \#MCTrackCand with at least one associated TrackCand | pattern recognition efficiency | $96.6 \pm 0.1$ | $94.5 \pm 0.1$ |
| \#MCTrackCands |  |  |  |

$\Rightarrow$ no striking changes in the standard tracking reconstruction in r22944 (MC-free Track Merging) w.r.t to release-00-05-03 (MC-assisted Track Merging)

## Efficiency VS Transverse Momentum

## efficiency VS pt


legend:

- r22944* (MC-free Track Merger): physical efficiency
- release-00-05-03 (MC-assisted Track Merger): physical efficiency


## Efficiency VS Polar and Azimuthal Angles

efficiency VS $\phi$

efficiency VS $\theta$

legend:

- r22944* (MC-free Track Merger): physical efficiency
- release-00-05-03 (MC-assisted Track Merger): physical efficiency


## VXD Detector Information Usage

probability to attach a true hit to the TrackCand

legend:

- r22944* (MC-free Track Merger): physical efficiency
- release-00-05-03 (MC-assisted Track Merger): physical efficiency


## Impact Parameters Errors VS pt

$\sigma_{\mathrm{d} 0} \mathbf{V S} \mathbf{p}_{\mathbf{t}^{\prime}}$, transverse impact parameter

$\sigma_{\mathbf{z 0}} \mathbf{V S} \mathbf{p}_{\mathbf{t}}$, longitudinal impact parameter

legend:

- r22944* (MC-free Track Merger): physical efficiency
- release-00-05-03 (MC-assisted Track Merger): physical efficiency


## Track Parameters Resolutions (reco-true)







## Track Parameters Pulls (reco-true)/error




- $30 \%$ underestimated errors on $\omega, \mathrm{I} 5 \%$ on the other track parameters
- $3-6 \%$ bias in the impact parameters and $-7 \%$ in $\tan \lambda$



## Track Reconstruction (1)

no PXD data reduction simulation


MC-free merger

new CDCTrackFinder

## Track Reconstruction (2)



DAF - a Kalman fit that weights hits and rejects ourliers
with pion mass hypothesis

## Track Parameterisation



- POCA = Point Of Closest Approach
- $\mathrm{d}_{0}$ is the 2 d signed distance of the POCA from the $z$ axis, the sign depends on the angular momentum of the track ( $>0$ in the fig.)
- $\varphi_{0}$ is the angle between $\mathrm{Pt}_{\mathrm{t}}$ and the x axis at the POCA, $\varphi_{0} \in[-\pi, \pi]$
- the sign of $\omega$, the curvature, is the same as the charge of the track (>0 in the fig.)
$\Rightarrow \tan \lambda$ is the ratio of $p_{z}$ and $p_{t}$, $\lambda \in[-\pi, \pi]$
- $Z_{0}$ is the signed distance of the POCA from the transverse plane


