

Max-Planck-Institut für Physik Werner-Heisenberg-Institut

MAX-PLANCK-GESELLSCHAFT

Sandra Horvat, V. Zhuravlov

Status of the Higgs and SUSY Analyses at MPI

ATLAS Meeting • May 21st, 2007 • MPI, Munich

Outline

Higgs and SUSY group at MPI are currently concentrating on the contributions to several ATLAS CSC Notes.

General goal: update of the ATLAS detector/physics performance. Requirement: use the common, centrally produced Monte Carlo data.

- Only validated Monte Carlo generators.
- Full detector simulation of millions of events, in the frame of the Computing System Commissioning (CSC).
- This allows (helps) for getting transparent and reliable results. Ongoing adventure for almost a year now, Athena releases (were) not stable.

In this report:

- Status of the central CSC data production.
- Higgs analyses and a few results.
- SUSY analyses and a few results.

Status of the CSC production

- 1. Release 12.0.31.x (x<4 \rightarrow G4 range cut = 30 μ m): simulate calibration samples with ideal geometry (DONE), obtain calibration constants using ideal geometry (DONE).
- 2. Release 12.0.31.x (mostly $x \ge 4 \rightarrow G4$ range cut = 1 mm): simulate physics samples with misaligned geometry (DONE).
- 3. <u>Release 12.0.6.1:</u>

reconstruct physics samples with the same misaligned geometry, using calibrations obtained in step (1) (DONE, <u>March 2007</u>). BUT, calibration constants not compatible for "1mm"-data in (2):

- electromagnetic energy scale affected: electrons: 2-3%, central jets 1%, forward jets 5%.
- \bullet muons, $\tau\text{-jets},$ missing energy shouldn't be affected.

"1mm"-bug: observed only after step (3), too late. Workaround:

- $\bullet\,$ Cannot re-simulate all data again with the "30 $\mu{\rm m}$ "-cut
- Re-simulate only a small fraction of samples, for the comparison.
- Apply offline corrections for the rest (on AOD-s, using 12.0.6.4).

4. Still problems with pile-up and cavern background: Rel. 12.0.6.5?.

Higgs Group Activities

Higgs: Contribution to the CSC Notes

CSC goal of the Higgs Working Group:

up-to-date official plot for the signal significance with all key channels.

Latest official result so far: TDR-plot (1999).

- $\bullet\,$ Many institutes working on the same channels \rightarrow coordinate and combine results.
- Use the experience from the previous studies (before CSC).
- Add the missing pieces: trigger, pile-up, systematic effects.

Higgs Working Group		Previous work
CSC Notes	MPI Contributors	(before CSC)
HG 1: (VBF) $H \rightarrow \gamma \gamma$	I.Potrap	-
HG 2: $H \rightarrow ZZ \rightarrow 4\ell$	N.Benekos, S.H., O.Kortner	Fullsim 10.0.4.
HG 3: VBF $H \rightarrow au au$	M.Groh, S.H., S.MMöck, (C.Valderanis)	Atlfast
HG 4: (VBF) $H \rightarrow WW$	S.H., S.Kaiser, O.Kortner, J.Yuan	-
HG 5: $ttH, H \rightarrow bb$	S.Kotov, J.Yuan	Fullsim 10.0.4
HG 6: $ttH, H \rightarrow WW$		
HG 7: $H/A \rightarrow \tau \tau$	G.Dedes, S.H.	Atlfast
HG 8: $H/A ightarrow \mu \mu$	N.Benekos, G.Dedes, S.H. (co-editoring)	Fullsim 10.0.4
HG 9: $H \rightarrow invisible$		
HG10: $H^\pm o au^\pm u$	T.Ehrich, S.MMöck	-

Higgs: Status of the CSC analyses at MPI

Last few months:

- Preparatory work on the pre-CSC data (11.0.42, 12.0.3):
 - Local Monte Carlo production (FZK, RZG, MPI).
 - Data validation (efficiencies, fake rates, resolutions).
 - Comparison: ATLFAST \leftrightarrow full simulation.
 - Selection of reconstructed objects:
 - \star lepton identification and isolation, missing energy, jet performance, $\tau\text{-}\mathrm{reconstruction}\ldots$
 - Start of new analyses (HG1, HG4, HG10). Cut optimizations for all analyses.
- March Analysis on the official CSC data started.
- 2007: First results shown at CERN. Planned presentations: TP Week, ATLAS Overview Week, EPS conference. Schedule: complete by the end of August.

NearFirst meeting with MPI theory on 02.05.2007. (S.Dittmaier et al.)future:Topics of common interest identified, work for next months.

Higgs: Collaboration with MPI theory group

NLO (NNLO) calculations are essential for all Higgs searches. There is a need for a systematic implementation of the newest theoretical calculations into present analyses.

- Using mainly the K-factors for signal so far, background wanted.
- Not only K-factors, but rather differential distributions needed (for $H \rightarrow 4\ell$, VBF).

Common fields of work with theory group at MPI:

- $H \rightarrow ZZ, WW \rightarrow 4f$: NLO EW+QCD MC generator (PROPHECY4f).
- * One of a kind, essential for the measurement of Higgs properties.
 * Plan: official implementation into Athena.
- $pp \rightarrow H + 2jets(VBF)$: NLO EW+QCD MC generator, in progress.
 - \star EW corrections exist only at MPI, could affect jet distributions.
 - * Plan: study of systematic effects in VBF $H \rightarrow WW, H \rightarrow \tau \tau$.
- Experience with NLO cross-sections for *ttH*, *bbH*, *ttbb*, *tt*+*jets*

Higgs: Comparison FULL SIM. ↔ ATLFAST

Some analyses cannot be performed with fully simulated data: important to identify differences w.r.t. ATLFast.

Higgs: Missing energy (full simulation)

• In AOD container: wrong muon contribution to p_T^{miss} .

 $\Rightarrow\,$ Calculating muon part offline from the reconstructed muon tracks.

Higgs: Jet performance studies (VBF channels)

In collaboration with S.Menke and Bonn (I.Rottländer).

After presenting these results:

Cone4H1Topo selected for the baseline analysis of VBF $H \rightarrow \tau \tau$.

Higgs: "1 mm"-data versus "30 μ m"-data

Channel: $bbA, A \rightarrow \mu^+ \mu^-$ ($m_A = 110$ GeV).

No differences, as expected for this channel (only muons, b-jets and E_T^{miss} in the final state).

SUSY Group Activities

SUSY: Contribution to the CSC Notes

One of the main CSC topics of the SUSY Working Group: how to estimate the most important backgrounds from the real data.

- Work at MPI started beginnig of this year.
- Concentrating on the inclusive searches, signatures with 1 or 2 leptons ("1-lepton" or "2-lepton" SUSY).
- Started with ATLFast (usually used in the SUSY WG), now extending to the full detector simulation.
 First results shown at CERN.
- Near future: specialized meeting with the theory group.

CSC Notes	Торіс	MPI Contributors		
SUSY 2	"Data-driven estimation of the top background to SUSY"			
	• Di-leptonic <i>tt</i> -contribution in "1-lepton SUSY"	X.A.Zhuang,		
		V.Zhuravlov		
	• Di-leptonic <i>tt</i> -contribution in "2-lepton SUSY"	F.Legger		
SUSY 3	"Data-driven estimation of the QCD background t	on of the QCD background to SUSY"		
	 Fast Shower Parametrisation 	F.Legger		
	 LHC machine/Cosmics background 	J.Dubbert,		
		J.v.Loeben		

SUSY: Fast Shower Parametrization

Many SUSY studies have to rely on the fast simulation,

since the backgrounds are large, impossible to fully simulate.

- (A) ATLFast: parametrized detector performance, or
- (B) Fast Shower: GEANT4-based fast simulation tool.
 - Ultimate goal: gain about a factor 10 of CPU time w.r.t. full sim., while having a "reasonable" physics performance (still far away).

Method	Description	Time gain	Status
LAr parametrisation	- use predefined showers	55%	poor E_T^{miss}
Production cuts	- when a particle is produced	30%	almost free
	below a given range,		cuts
	track energy deposited instead		
UserLimits	- stop a track when it drops	30%	premature
	below a given energy		code
Time cut	- remove particles created		
	after a certain time		
Neutrino cut	- remove all neutrinos	10%	free cuts
Stepper change	- used by G4 to determine next		
	position of a particle in B-field		
Muon cuts	- remove particles in dead material of	0%	check muon
	the muon spectrometer, which are	???	distributions
	not likely to pass to sensitive regions		

SUSY: $t\bar{t} \rightarrow b\bar{b}\ell\nu\ell\nu$ contribution to "1-lepton" SUSY

Why could we miss one lepton in $t\bar{t} \rightarrow b\bar{b}\ell\nu\ell\nu$?

- Not in the acceptance; Close to a jet (not isolated);... or ... Lepton is a τ -lepton:
- 1. Extract a clean $t\bar{t} \rightarrow b\bar{b}\ell\nu\ell\nu$ Control Sample from data $(\ell \equiv e, \mu)$:
 - 2 high-p_T leptons (one electron, one muon)
 - 4 iets
 - E_{τ}^{miss} > 100 GeV
- 2. Substitute one lepton by τ , decay τ , recalculate E_{τ}^{miss} .

Results: Expected from $tt \rightarrow bb\ell \nu \tau \nu$ sample: 180 events

- Estimated from the Control Sample (No SUSY): 176 events
- Estimated from the Control Sample (SU3, i.e. with SUSY): 292 events