Classification of the MCTrackCands

- ★ Introduction
- * Classification Criteria
- ★ Results
- ★ ROI finding

Belle II Face2Face Tracking Meeting ~ January, 11st 2016

The Project

- Append a module following the TrackFinderMCTruth that classifies the MCTrackCands on the basis of their traceability and produces subsets of MCTrackCands:
 - idealMCTrackCands
 - non-idealMCTrackCands
 - fineMCTrackCands
 - nastyMCTrackCands
- Estimate the pattern recognition (and fitting) efficiencies on the lists separately: expect ~I on idealMCTrackCands, ...
- → The VXD and CDC pattern recognition modules will have separate lists
 - focused first on the classification of the MCTrackCands from the VXD

TrackFinderMCTruth TrackCands

current PR efficiency definition:

TrackFinderMCTruth:

✓ factors out geometrical acceptance
✓ factors out detector inefficiencies
✓ requires a minimum number of hits

BUT it does not handle:

- kinks & large multiple scattering
- tracking volume covering only partially the helix
- hits in both outgoing and ingoing helix arms

TrackFinderMCTruth TrackCands

current PR efficiency definition:

TrackFinderMCTruth:

✓ factors out geometrical acceptance
✓ factors out detector inefficiencies
✓ requires a minimum number of hits

BUT it does not handle:

- kinks & large multiple scattering
- tracking volume covering only partially the helix
- hits in both outgoing and ingoing helix arms

TrackFinderMCTruth TrackCands

current PR efficiency definition:

BUT it does not handle:

- kinks & large multiple scattering
- tracking volume covering only partially the helix
- hits in both outgoing and ingoing helix arms

➡ There are other classes of non-idealMCTrackCands

The MCTrackCandClassifier Module

I have implemented a set of criteria to reject the MCTrackCands belonging to the categories shown in the previous slides:

- → The accepted MCTrackCands are *copied* into the **ideal**MCTrackCand StoreArray.
- This is a work-in-progress module, further improvements needed on the criteria side and on the module design (wait for slide 22)

The Model

The geometry of the problem is quite complicated

- ➡ limit the numbers of degrees of freedom:
 - work on the transverse plane
 - hit position (distance from helix center and from 0,0)
 - helix radius
- Use as much as useful MCTruth informations as possible
 - MCParticle
 - TrueHit

Classification Sequence

- TrackFinderMCTruth produces the list of MCTrackCands
 - no cut on track energy (the default EnergyCut = 0.1)
 - use PXDHits and SVDHits, or SVDHits only
 - use clusters
 - minimum number of one-dimensional hits = 5
- retrieve the MCParticle related to the MCTrackCand
- Loop on the Clusters related to the MCTrackCand
 - for each Cluster retrieve the corresponding TrueHit:
 - if the TrueHit satisfies the classification criteria \rightarrow the cluster is accepted
 - otherwise \rightarrow the cluster is rejected & move to the next MCTrackCand
- Check if the Cluster is ID (only u or only v SVD cluster) or 2D (PXD cluster or both u and v SVD clusters)
- If at least 5 ID information are accepted → the MCTrackCand is classified as idealMCTrackCand (with *all* the hits belonging to the original MCTrackCand)

predict the position of the next hit on the expected detector plane, taking into account multiple scattering

$$\theta_{MS} = \frac{13.6 \text{ MeV}}{\beta c p} Z \sqrt{\frac{X}{X_0}}$$

project the region where the next hit is expected along the helix radius

 $dR = n \, dL \, \theta_{MS}$

check if the next-hit distance from the helix center (d) lies in the expected region

|d - R| < dR

If the hit satisfies the criteria, check the next criteria (next slide), otherwise move to the next MCTrackCand

Giulia Casarosa

 $F2F \sim MPI$

Criteria #1 at work |d - R| < dR

asymmetric distribution, higher left tail since no energy loss taken into account: the correction is symmetric while the physical effect (energy loss) is not.

Giulia Casarosa

F2F ~ MPI

can be taken into account in the future

- divide the transverse plane into 2 regions given the first hit and the pT at POCA
- ⇒ given the curvature 𝔅 and the relative position between the first hit and the helix center, predict the semi-plane where the next hit is expected to be
- if the next hit belongs to the expected semi-plane, accept the hit and move to the next one (checking first criteria #1), otherwise move to the next MCTrackCand

Criteria #2 at work

Hit Radius

cut efficiency (98.8± 0.1)%

Hit Distance

asymmetric distribution, higher left tail since no energy loss taken into account: the correction is symmetric while the physical effect (energy loss) is not.

evaluate the time need to complete a lap in the transverse plane:

14

MCTrackCandClassifier at Work

- ⇒ 2kY(4S) generic decays, Belle II geometry
- ➡ 20k MCTrackCands (PXD&SVD TrueHits, use of clusters, # of I-D hits > 5, no energy cut)
- ➡ fraction of MCTrackCands classified as ideal = (96.2±0.1)%

TrueHits per MCTrackCands

What Hits are Rejected?

→ Most of the reject hits are in Layer6, and a smaller fraction in the wedge part of the SVD

→ Most of the rejected hits belong to low transverse momentum tracks (R < 70 cm \leftrightarrow pT < 300 MeV/c)

idealMCTrackCand Acceptance

fraction of ideal MCTrackCand VS λ

- 75% of MCTrackCands in the forward direction are classified as ideal
 - selection criteria are not designed to be applied to hits in the wedge part of the SVD
- 98% of the MCTrackCands in the central region are classified as ideal
- the fraction of ideal MCTrackCands is independent of φ, as expected

fraction of ideal MCTrackCand VS

idealMCTrackCands VS transverse momentum

fraction of ideal MCTrackCand VS pt

- the fraction of MCTrackCands classified as ideal = (96.2±0.1)%
- → 68% of tracks with pT < 100 MeV/c are classified as ideal</p>
- ➡ fraction of idealMCTrackCands jumps to 92% for 100 MeV/c < pT < 200 MeV/c</p>
- ➡ p_T > IGeV/c around 1% of tracks are not classified as ideal

Remove PXD from Reconstruction

➡ Remove the PXD from reconstruction (TrackFinderMCTruth) and repeat the study

fraction of ideal MCTrackCand VS pt

- the fraction of MCTrackCands classified as ideal = (97.8±0.1)%
- ➡ 88% of tracks with pT < 100 MeV/c are classified as ideal</p>
- ➡ fraction of idealMCTrackCands jumps to 96% for 100 MeV/c < pT < 200 MeV/c</p>
- ➡ pT > IGeV/c around 1% of tracks are not classified as ideal
- ★ the fraction of ideal MCTrackCands is higher than the case with PXD in reconstruction
- ★ the reason is because some non-ideal MCTrackCands built with the PXD in reconstruction chain are not there anymore (no enough number of ID infos)

What Hits are Rejected?

Hit Radius

no significant difference in these distributions w/o PXD

Hit Distance

→ Most of the reject hits are in Layer6, and a smaller fraction in the wedge part of the SVD

→ Most of the rejected hits belong to low transverse momentum tracks (R < 70 cm \leftrightarrow pT < 300 MeV/c)

What About ROI Finding?

ε = # PXDDigits inside a ROI total # PXDDigits of TrackCand

- ROI Finding efficiency is very slightly improved using the idealMCTrackCands as input
- Inefficiency due to failed fits with both MCTrackCands and idealMCTrackCands
- ★ reasons of the very small increase of efficiency may be:
 - I. idealMCTrackCand contains *all* the MCTrackCand hits also the hits that have not passed the criteria (can happen in the case the first 5 ID infos pass the criteria)
 - 2. the fitter part is not well configured in the PXDDataReduction Module

Future Improvements

- 1. add a new criteria: if there is a hit in the wedge part, the hit is not accepted
- 2. remove the hits from the first one not satisfying any of the criteria
- 3. correct the computation of θ_{MS} using the incident momentum (from TrueHit)
- 4. can take into account the (small) energy loss
 - same approach as MS: allow for a "small" energy loss and recompute the helix radius and position
- 5. classify the non-idealMCTrackCands (fineMCTrackCands, nastyMCTrackCands)
 - need a (small) redesign of the module, e.g. disentangle the performance analyzer from the core classifier (split the module in 2)
 - what are the parameters that we want to keep configurable by the user?
- 6. use SelectSubset in order to preserve the relations between TrackCands and other objects
 - can't be used at the moment because the genfit::TrackCand inherits from a TObject and nit from a RelationObject

Conclusions

- ➡ The first working version of the MCTrackCandClassifier module is on svn.
- A few more modifications are needed to actually test the VXDTrackFinder, ROIFinding, ...
- ➡ Next Steps:
- in February • implement I. and 2. from previous slide (do not accept hits in the wedge part, remove hits not passing the criteria from the idealMCTrackCands)
 - test ROIFinding & VXDTrackFinder (Jakob)
 - implement the other improvements
 - PXDDataReduction module need a redesign to improve the fitting part
 - why fit twice (PXDDataReduction & GenFitter) on the HLT?

Thank You!

for the next beam test

Track Parameterisation

- ➡ POCA = Point Of Closest Approach
- d₀ is the 2d signed distance of the POCA from the z axis, the sign depends on the angular momentum of the track (>0 in the fig.)
- ⇒ ϕ_0 is the angle between p_t and the x axis at the POCA, $\phi_0 \in [-\pi, \pi]$
- ➡ the sign of W, the curvature, is the same as the charge of the track (>0 in the fig.)

LONGITUDINAL VIEW

- ⇒ tan λ is the ratio of p_z and p_t, $\lambda \in [-\pi, \pi]$
 - z₀ is the signed distance of the POCA from the transverse plane

