# Indirect searches for dark matter - Lec IV





Christoph Weniger
IMPRS PhD block course
23-25 Nov 2015, MPP, Munich



# Cosmic rays



# Cosmic ray propagation



# Cosmic ray composition



# The "grammage" matters

Two sources for cosmic rays



**Primary cosmic rays** from supernova remnants (likely)



Secondary cosmic rays from spallation etc

#### Diffusion in a box



Chemical composition of CRs vs solar system 10<sup>7</sup> Boron —o— Solar System 10<sup>6</sup> - Galactic CRs 10<sup>5</sup> 10<sup>4</sup>  $10^{3}$ 10<sup>2</sup> Be 10<sup>1</sup> 10° 10<sup>-1</sup> Primary + 10<sup>-2</sup> **s**econdary 10<sup>-3</sup> 'Primary" (before 10<sup>-4</sup> acceleration)20 30 Atomic Number (Z)

Total grammage (column density along propagation path)  $G_{\mathrm{total}} = n_{\mathrm{crossings}} G_{\mathrm{disk}}$ 

Secondary Boron: Secondary

$$n_B = n_C \sigma(C \to B) \cdot G_{\text{total}} \implies G_{\text{total}}$$
  
 $n_{\bar{p}} = n_p \sigma(p \to \bar{p}) \cdot G_{\text{total}} \implies n_{\bar{p}}$ 

# Fit to B/C, predictions for anti-protons

Viable parameters for the propagation model: (fit to B/C and p

| datal                     |                     |      |                                     |        |                      |           |                           |                |            |                      |                 |                |
|---------------------------|---------------------|------|-------------------------------------|--------|----------------------|-----------|---------------------------|----------------|------------|----------------------|-----------------|----------------|
| <del>data)</del><br>Model | $z_t(\mathrm{kpc})$ | δ    | $D_0(10^{28} \text{cm}^2/\text{s})$ | $\eta$ | $v_A(\mathrm{km/s})$ | $\gamma$  | $dv_c/dz({\rm km/s/kpc})$ | $\chi^2_{B/C}$ | $\chi_p^2$ | $\Phi~(\mathrm{GV})$ | $\chi^2_{ar p}$ | Color in Fig.s |
| KRA                       | 4                   | 0.50 | 2.64                                | -0.39  | 14.2                 | 2.35      | 0                         | 0.6            | 0.47       | 0.67                 | 0.59            | Red            |
| KOL                       | 4                   | 0.33 | 4.46                                | 1.     | 36.                  | 1.78/2.45 | 0                         | 0.4            | 0.3        | 0.36                 | 1.84            | Blue           |
| THN                       | 0.5                 | 0.50 | 0.31                                | -0.27  | 11.6                 | 2.35      | 0                         | 0.7            | 0.46       | 0.70                 | 0.73            | Green          |
| THK                       | 10                  | 0.50 | 4.75                                | -0.15  | 14.1                 | 2.35      | 0                         | 0.7            | 0.55       | 0.69                 | 0.62            | Orange         |
| CON                       | 4                   | 0.6  | 0.97                                | 1.     | 38.1                 | 1.62/2.35 | 50                        | 0.4            | 0.53       | 0.21                 | 1.32            | Gray           |





# The LAT view on the gamma-ray sky



Five years of data taking > 1
GeV

Gamma-ray pulsar positions are
indicated as circles
http://svs.gsfc.nasa.gov/vis/a010000/a011300/a011342/



# Fermi LAT sky in pseudo colors



Selig+ 2014, 6.5 years of data, using D<sup>3</sup>PO algorithm

# Contributions to Galactic diffuse gamma rays



#### **Neutral pions**



#### **Inverse Compton**



#### **Predictions rely on**

- Distribution and composition of interstellar medium
- Distribution and spectrum of interstellar radiation field
- Distribution and injection spectra of cosmic ray sources
- Average Galactic magnetic field
- Properties of diffusion halo
- Hadronic scattering cross-sections

• ...

# Distribution of cosmic-ray sources



http://www.nasa.gov/mission\_pages/sunearth/news/gallery/galaxy-location.html

## Neutral hydrogen (H I) from 21 cm line



#### H I tracer

- LAB survey (Kalberla+ 2005)
- Decomposition along line-of-sight using Doppler shift

GALPROP; Ackermann+ 2012

$$v_{\rm LSR} = R_{\odot} \left( \frac{V(R)}{R} - \frac{V_{\odot}}{R_{\odot}} \right) \sin(l) \cos(b)$$

• Distributed in rings (boundaries: 0.0, 1.5, 2.0, 2.5, ..., 6.5, 7.0, 8.0, 10.0, kpc)

# Example: Spatial decomposition of CO map



- Significant column densities all the way towards the GC (inner degrees)
- No molecular hydrogen above 5 deg in the inner ~5 kpc

### Interstellar radiation field

**Т**АроН

CMB

**DIBR** 

Strong+ 2000; Porter & Strong 2005; Moskalenko+ 2006; Porter+ 2008



### The Fermi Bubbles

#### Fermi Bubbles

[Su+ 2010; Dobler+

2010; Ackermann+ 2014]



Are modeled with simple template.



#### **Possible explanations**

- Jets from the black hole [Guo & Mathews 2012, Yang+ 2012]
- Feedback from nuclear star formation. [Crocker & Aharonian 2011, Carretti+ 2013; Lacki 20141
- Shocks from accretion flows onto Sgr A\* [Cheng+ 2011, Mou+ 2014]
- Spherical outflow from Sgr A\* [Zubovas+ 2011]

### Blazars



### **Pulsars**



# Results spatial and spectral



#### **General performance of models**

Ackermann+ 2012

- Models that reproduce the local cosmic ray measurements reproduce gamma-ray observations in the Galaxy reasonably well
- Residuals at high energies remain, possibly indicating variations in the diffusion properties towards the inner Galaxy [e.g. Gaggero+ 2014]

### Fractional residuals



(model-data)/data (200 MeV – 100 GeV)

### The Fermi Galactic center GeV excess



Goodenough & Hooper 2009, Vitale+ (Fermi coll.) 2009, Hooper & Goodenough 2011, Hooper & Linden 2011, Boyarsky+ 2011 (no signal), Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Huang+ 2013, Gordon & Macias 2013, Macias & Gordon 2014, Zhou+ 2014, Abazajian+ 2014, Daylan+2014, Calore+ 2014, Gaggero+ 2015

### The Galactic Center



### The excess at low and mid-latitudes

NGC 6266

47 Tuc Terzan 5

All MSPs Dark Matter

50.0

5.0 10.0

E<sub>~</sub> (GeV)

### Excess at the Galactic center $\lesssim 2^\circ$

Goodenough & Hooper 2009 Hooper & Goodenough 2011 Hooper & Linden 2011 Boyarsky+ 2011 Abazajian & Kaplinghat 2012

Gordon & Macias 2013 Macias & Gordon 2014

Abazajian+ 2014

Daylan+2014

Excess at mid-latitudes (as expected for an extended

**PMpsignal)**tyer 2013 Huang+ 2013

Zhou+ 2014

Daylan+ 2014



 $E^2 dN/dE$  (Arb. Units)

 $-1.0 \cdot 10^{-6}$ 

[Hooper & Slatyer 2013]



 $|\ell| \lesssim 20^{\circ}, \quad 2^{\circ} \lesssim |b| \lesssim 2^{\circ}$ 

### Fluxes at low latitudes

#### Calore, Cholis, CW 2014

Reanalysis of "inner Galaxy" ROI

 $b [\deg]$ 

- We allow for extreme variations in ISRF, magnetic field, diffusion properties
- The "excess" is relatively robust w.r.t. all variations
   → Seems to be genuine emission from the Galactic





 $\ell \, [\deg]$ 

# Typical residuals after foreground subtraction

Calore, Cholis, CW 2014 40 deg x 40 deg



- Left: Point source mask clearly visible
- Middle: Residuals at the level of <20% are observed
- Right: Re-adding the DM template clearly shows an extended excess around the GC

# Component spectra



$$\left. \frac{dN}{dE} \right|_{\text{real}} = \frac{dN}{dE}_{\text{meas. res.}} + \delta \left. \frac{dN}{dE} \right|_{\pi_0} + \delta \left. \frac{dN}{dE} \right|_{ICS} + \delta \left. \frac{dN}{dE} \right|_{rest}$$

# Excess spectra in control regions



# Low/high energy tails of spectrum very uncertain



| Spectrum                       | Parameters                                                                                                                                    | $\chi^2/\mathrm{dof}$ | p-value |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|
| broken PL                      | $\alpha_1 = 1.42^{+0.22}_{-0.31}, \ \alpha_2 = 2.63^{+0.13}_{-0.095}, \ E_{\text{break}} = 2.06^{+0.23}_{-0.17} \ \text{GeV}$                 | 1.06                  | 0.47    |
| DM $\chi\chi\to \bar{b}b$      | $\langle \sigma v \rangle = 1.76^{+0.28}_{-0.27} \times 10^{-26} \text{ cm}^3 \text{ s}^{-1},  m_{\chi} = 49^{+6.4}_{-5.4} \text{ GeV}$       | 1.08                  | 0.43    |
| DM $\chi\chi \to \bar{c}c$     | $\langle \sigma v \rangle = 1.25^{+0.2}_{-0.18} \times 10^{-26} \text{ cm}^3 \text{ s}^{-1},  m_{\chi} = 38.2^{+4.6}_{-3.9} \text{ GeV}$      | 1.07                  | 0.44    |
| PL with exp. cutoff            | $E_{\rm cut} = 2.53^{+1.1}_{-0.77} \text{ GeV}, \ \alpha = 0.945^{+0.36}_{-0.5}$                                                              | 1.37                  | 0.16    |
| DM $\chi\chi \to \tau^+\tau^-$ | $\langle \sigma v \rangle = 0.337^{+0.047}_{-0.048} \times 10^{-26} \text{ cm}^3 \text{ s}^{-1},  m_{\chi} = 9.96^{+1.1}_{-0.91} \text{ GeV}$ | 1.52                  | 0.065   |

# Spatial distribution of excess emission



Can be fit with a contracted NFW profile and DM annihilation into b-quarks, for DM masses around 50<sub>1</sub>GeV

$$\rho_{\rm DM} = \frac{1}{r^{\gamma}(r_s + r)^{2 - \gamma}} \qquad \gamma \simeq 1.26$$

(based on Calore+ 2014)



# The D<sup>3</sup>PO version of the GeV excess



Pixel-by-pixel spectral decomposition:

$$\frac{dN}{dE} = \alpha_1 \left. \frac{dN}{dE} \right|_{Bu} + \alpha_2 \left. \frac{dN}{dE} \right|_{Cl} + \alpha_3 \left. \frac{dN}{dE} \right|_{b\bar{b}} + PSC$$

# "DM-like" component (GeV excess)



Local significance for contribution from bb spectrum

# The poor-man GeV excess



Blue: stacked MSP spectrum







Blue: stacked MSP spectrum













Blue: stacked MSP spectrum



Blue: stacked MSP spectrum









Blue: stacked MSP spectrum

 $\ell \, [\deg]$ 





#### Summary



#### **Notes**

- What we call "excess" is most likely the gamma-ray emission from the Galactic bulge (this component is not included or modeled in most of the diffuse emission models)
- The emission is compatible with a uniform energy spectrum and spherically symmetric volume energy spectrum and spherically symmetric volume energy following an inverse power-law

#### Star formation in the CMZ



#### Note

- Previous Galactic diffuse emission models neglected CR injection in the inner Galaxy (with few exceptions, Ackermann+ 2013)
- Inverse Compton emission from electrons accelerated in the CMZ potentially accounts for a good fraction of the bulge emission
- However, the predicted spectra are usually too soft to fully account for the observations





#### Two leptonic outbursts?



| Parameter                                    | Model A    | Model B      | Model C            |
|----------------------------------------------|------------|--------------|--------------------|
| $\alpha_1$                                   | 1.2        | 2.0          | 1.1                |
| $\alpha_2$                                   | NA         | NA           | 1.0                |
| $E_{\mathrm{cut},1}$                         | 1  TeV     | 1  TeV       | $20  \mathrm{GeV}$ |
| $E_{ m cut,2}$                               | NA         | NA           | 60  GeV            |
| $\tau_1 \text{ (Myr)}$                       | 0.83       | 0.46         | 0.1                |
| $\tau_2  (\mathrm{Myr})$                     | NA         | NA           | 1.0                |
| $N_1 \ (10^{51} \ {\rm erg})$                | 2.89       | 9.87         | 0.1                |
| $N_2 \ (10^{51} \ {\rm erg})$                | NA         | NA           | 0.88               |
| δ                                            | 0.20       | 0.23         | 0.3                |
| $D_0 \ (10^{28} \ \mathrm{cm}^2/\mathrm{s})$ | 5.08       | 9.12         | 9.0                |
| $D_{zz}/D_{xx}$                              | 1.12       | 0.87         | NA                 |
| $v_A \text{ (km/s)}$                         | 176        | 122          | 150                |
| $B_0 \; (\mu { m G})$                        | 11.5       | 11.5         | 11.7               |
| $r_c \; (\mathrm{kpc})$                      | 10.0       | 10.0         | 10.0               |
| $z_c \; (\mathrm{kpc})$                      | 2.0        | 2.0          | 0.5                |
| $dv_c/dz$ (km/s/kpc)                         | 0.0        | 0.0          | 0.0                |
| ISRF                                         | 1.0, 1.0   | 1.0, 1.0     | 1.8, 0.8           |
| $\chi^2 \ (p-\text{value})$                  | 277 (0.04) | 317 (0.0004) | 261 (0.14)         |

# Some tuning is required to make it work reasonably well

- Extremely hard injection indices (<2)</li>
- One burst around 1 Myr
- ~10^51 erg injected energy in CR e-

[Cholis, Evoli, Calore, Linden, CW, Hooper 2015]

### Even two bursts cannot explain everything



#### **Summary**

- It is possible to achieve a reasonable description of the data by using two bursts and tuning injection and propagation parameters
- However, the rise of the emission towards the inner few 10 pc is not predicted
- A series of leptonic bursts are observationally viable, but not likely to explain all of the excess emission

[Cholis, Evoli, Calore, Linden, CW, Hooper 2015]



[Abdo+ 2013, 2<sup>nd</sup> Fermi Pulsar catalog]

### Young pulsars



## Millisecond pulsars







#### Millisecond pulsars from disrupted globular clusters



#### **Possible formation history**

- Field millisecond pulsars in the bulge could have been created in globular clusters that were tidally disrupted
- This scenario was suggested to explain both normalization and shape of the excess emission

### An observational challenge

#### Point sources or diffuse emission?

 A signal composed of point sources would appear more "speckled" than a purely diffuse signal



#### **Proposed methods**

- One-point statistics
  - Random contribution of point sources to individual pixels leads to non-Poissonian noise [Lee et al. 2014] (successfully used at high latitudes byMalyshev & Hogg 2011)
  - BUT: Requires modeling / subtraction of backgrounds → Subject to systematics
- Local maxima of normalized wavelet transform:
  - "Wavelet transform": spatially constrained Fourier transform.

    Filters out structures of a specific size, like point sources. Removes diffuse emission.
  - "Normalized". Null hypothesis is equivalent to smoothed Gaussian random

## Effective modeling of MSPs

#### **Modeling of unresolved sources**

- We assume that they are distributed like required to explain the GCE (with a radial index of -2.5 or so)
- We simulate PSCs that follow a luminosity distribution

$$\frac{dN}{dL} \sim L^{-1.5}$$

up to some cutof $L_{
m max}$ 

• Main uncertainties: Slope, normalization and cutoff of the luminosity function. Here: slope fixed to -1.5



#### Peaks in the normalized wavelet transform

#### **Definitions**

• First we perform a standard wavelet

transform 
$$\mathcal{F}_{\mathcal{W}}[\mathcal{C}](\Omega) \equiv \int d\Omega \, \mathcal{W}(\Omega - \Omega') \mathcal{C}(\Omega')$$

Wavelet

Count map (1-4 GeV)

 We adopt the 2<sup>nd</sup> of the Mexican Hat Wavelet Family, which was shown to have a good performance w.r.t. background variations (used by Planck for detection of compact radio sources, Ade+ 2013)



Peak identification is numerically



On sufficiently smooth data sets, and for a large number of photons, this behaves approximately like a normal distribution

→ Smoothed Gaussian random

### Wavelet transform of inner Galaxy data

Image color: Value of normalized wavelet transform

**Black circles**: Wavelet SNR peaks with values above 2 (circle area  $\sim S$ )

Red circles: 3FGL sources for comparison (circle area ~ sqrt(TS) in 1-3

GeV band)

between sqrt(TS) and S.

Bartels, Krishnamurthy, CW Green crosses: Unmasked sources (MSP-like) 2015 Dashed lines: Spatial bins for likelihood analysis Based on: 10 Pass8 Fermi LAT data 40 Ultraclean events Front+back converted 32 6 ½ years of data 1-4 GeV range 5 24 Masked disk 16 |b|>2 degArtifacts around bright sources (removed in later analysis) → Except for bright sources (where noise -10-16estimates includes source flux), we find 10 -10good agreement  $\ell$ , Gal. longitude [deg]

### Histogram of peaks and MC results



We use a common maximum likelihood analysis (assuming that peaks are Poissonian distributed) to perform parameter estimation for the luminosity function:

#### Histogram

• Error bars: inner Galaxy data

#### **Null-hypothesis**

- Red: null-hypothesis
- Gray: Control region results

#### Fit for norm and Lmax

Green: best-fit

→ 8.3 sigma
significance
predictions
+ simple
estimates for
disk population

$$(L_{\max}, n_{\mathrm{MSPs}})$$

#### Best-fit contours agree with MSP expectations



#### **Results**

- For a luminosity function index around 1.5, a MSP population with the bestfit normalization would reproduce 100% of the excess emission
- The best-fit cutoff luminosity is compatible with gamma-ray emission from detected nearby MSPs (beware of large uncertainties due to uncertainties in the distance measure, Petrovic+ 2014, Brandt & Kocsis 2015)

### Many things that one can check







#### Likely MSPs



#### Self consistent in sub ROIs



#### Conclusions

- There is a strong excess of ~GeV gamma-rays in the inner Galaxy, above expectations from a priori diffuse emission models (i.e. without CR sources in the inner Galaxy)
- Excess emission could be partly due to standard diffuse emission (e.g. associated with the central molecular zone), and partly to other components
- The excess as a whole resembles very well a vanilla signal from DM annihilation
- Millisecond pulsars
  - are the arguably most likely explanation of a large part of the excess emission
  - corroborating evidence for this is found by dedicated searches for sub-threshold source populations in the inner Galaxy
  - → Next thing is to try to find them in radio