
Summary of the first Common Track Reconstruction Software
Forum

Johannes Rauch

Physik Department E18
Technische Universität München

Germany

December 4, 2015

The HEP Software Foundation

hepsoftwarefoundation.org

Resources, events, projects, etc.

J. Rauch — Summary of the first Common Track Reconstruction Software Forum 2

hepsoftwarefoundation.org

Frank Gaede, Benedikt Hegner, Markus Elsing

Introduction:
Goals of the Common

Tracking Software Forum

An introduction to creating a "forum" across
experiments to discuss and promote the

development of tracking software

Markus Elsing

Marrakech: Andi, Andreas, Daniel, me, Heather

The Experiments' Software Challenges
•ATLAS/CMS - million dollar question:
➡ how to reconstruct HL-LHC events with 200 pileup
➡ how to keep the physics performance up
➡ and do it within the computing resources we'll have...

• tracking is reconstruction CPU driver
➡ not new, we knew this would be the problem
➡ will aim to improve on already highly optimised code

• LHCb and ALICE trigger-less readout
➡ processing/filtering done in online trigger farms
➡ offline quality reconstruction online to achieve

needed data reductions

• Belle-II is about to start data taking
➡ raw data volumes comparable to LHC

• Future Collider studies (ILC, CLIC, FCC)

3

ATLAS HL-LHC event in new tracker

tracking CPU vs
pileup at HL-LHC

Markus Elsing

Marrakech: Andi, Andreas, Daniel, me, Heather

Technology Challenges

•Moore's law is still alive
➡ number of transistors still doubles every 2 years

• no free lunch, clock speed no longer increasing
➡ lots of transistors looking for something to do:

• vector registers
• out of order execution
• hyper threading
• multiple cores

➡ many-core processors, including GPGPUs
• lots of cores with less memory

➡ increase theoretical performance of processors

• challenge will be to adapt HEP software
➡ hard to exploit theoretical processor performance

• many of our algorithm strategies are sequential
➡ need to parallelise applications (multi-threading)

(GAUDI-HIVE and CMSSW multi-threading a step in this direction)
• change memory model for objects, more vectorisation, ...

6

Processor Landscape
• Moore’s law - alive and well: 2

years → 2 x transistors!

• There is now a lot of transistors
looking for something do do:!

• Vector registers!

• Out of order execution!

• Multiple Cores!

• Hyperthreading!

• All of these techniques increase
the theoretical performance of a
processor!

• But hard to achieve this
performance (or close to it) with
HEP applications

4

1980 1990 2000 2010

1e
+0

0
1e

+0
2

1e
+0

4
1e

+0
6

Processor scaling trends

dates

R
el

at
ive

 s
ca

lin
g

●

●

●

●●

●

●●
●●

●
●●

●●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●●●●●●
●●●●

●

●●
●

●●
●
●
●
●●●●●●●●●●●●

●●●●
●●●

●
●

●●●●●●●
●
●●

●
●

●

●●●●●●●●●●
●

●
●

●
●
●●●
●●
● ●

●●●
●

●
●

●●

●

●

●

● ●

●

●

●●

●

●
●●●●●●●
●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●● ●●●

●●●●●●●
●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●
●

●●
●●●●●●●●
●●

●
●●●●●●●●●●●●●●●●●●
●●●●●●●
● ●●●●

●●●●●●

●●●●

●●
●●●

●

●

●●
●

●●

●●

●

●●

●
●●

●

●
●●

●●●●●●

●●●●●
●

●●●●
●●●●●●

●●● ●
●
●● ●●●●●●●●●

●●●●●

●

●

●●
●

●

●●●

●●●●●●●●

●
●
●●
●●●●●●

●●

●

●

●

●

●

●

●●●●●
●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●
●●●●●●
●●

●●
●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

● ● ●

●

●

●

●●●

●

●

●●●●

●
●

●●●●●
●●●●
●●●
●●●●●●●●●●●● ●

●●●●●

●●●●●
●●

●●
●●●●●●●●●●

●●●●

●●

●

●●●

●●

●

●
●●●● ●●●●

●● ●●●●●

●●●●●●●●●●●●●●●●●●● ●●● ●●●
●●
●●●

●
● ●● ●●●●●●●

●●●
●●

●●●●●

●●

●●●●●●●

●

●●

●●●●
●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●
●

●●●
●●

●

●
●

●●●

●●
● ●● ●

●

●●●● ●
●● ●

●●●●

●
●●

●●●●●●●

●●●●●● ●
●●●

●
●●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●
●●

●

● ●●●●●●●●

●

●
●
●●

●●●

●

●●●●
●●●●●●●●●●●

●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●

●●●●●●●●●●
●●

●●●●●●●●●●
●●●
●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●
●●●●●●

●●●●●●●●●● ●●

●
●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●

●
●
●●
●●●

●●●●
●●●

●●●
● ●●

●
●●●
●●●

●●●●●●●●

●
●
●
●

●

●

●
●

●●
●
● ●●●●●●●● ●● ●

●●●●●●
●●●●●●●●

● ●●●●● ●●●●●●●●●●●●●●●●●●●
●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

● ●●

●●●
● ●●●

●
●●

●●

●

●●
●●

●●

●●●●●
●●●●●●●●

●●●●●●●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●●●●●●
●
●●●●●●

●●

●●●●●●
●

●
●●

●●●●●●●●
●●

●

●●

● ●

●

●

●

●

●

●

●
●●

●●

●

●

●
●
●●

●●

●

●

●●●●

●●

●●●●

●

●●●
●●●●

●●

●

●●

●●

●●●●●●●●●

●●●●●●●●

● ●

●

●

●

●

●●
●

●
● ●● ●

●●

●●
●●

●
●

●

●

●

●
●
●●

●
●●●●

●●●●

●●

●●●●●●●●●●●●

●●●●
●●●

●●●●●●● ●●

●●●●●●●●●● ●
●●●●●
●●●

●

●●●●

●

●●

●●

●
●
●●●●●●●

●●●●
● ●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●

●●
●

●

●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●● ●●●

●●

●

●●

●

●

●●
●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●

●
●●

●●●●●●
●●
●●

●

●●●●●●●●
●●●●
●●●●
●●●●●●●●

●
● ●●●●

●●
●●●●

●●●
●

●●
●●●

●

●
●
●●
●●

●●

●●

●

●●

●
●
●

●
●
●●●●
●●●●●
●

●●●●
●
●●●●●

●●●
●●
●

●●●
●●●●●●

●●●
●
●

●

●
●●

●

●●●

●●●●●●●●

●●
●
●
●●●●●

●●●●●

●
●
●●

●●

●●●●●●●●●●●●●●●●

●

●
●●
●
●

●●●●●
●●●●●
●
●
●●

●
●

●
●
●
●

●

●

●

●●

●●●
●

●

●●●●●
●●●●
●●●
●●●●●●●●●●●●

●
●●●●● ●●●●●

●●
●
●
●
●
●●
●●●●
● ●

●
●●

●

●●●

●
●
●●●●

●
●●●
●●

●●
●●●

●

●●●●●●●●●●●●●●●●●● ●●●
●●●

●●
●
●●

●●
●

●

●●●
●●

●●

●●

●

●●

●
●
●
●● ●●
●
●

●●●

●●

●●

●●●● ●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●

●●●

●

●●●

●
●● ●

●

●

●●●
●

●●

●●
●

●

●

●●
●
●●●

●●●●
●
●

●
●●

●●●

●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●
●●●●
●●●●●●●●

●●

●

●●

●●

●

●●

●●
●●●

●

●●
●●
●

●

●●●●●●●●

●
●
●

●
●●● ●●●●●●●●●●●
●●●●●

●●●●●●●●●
● ●●●●

●●●

●
●
●●
●●●●●

●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●

●●●●●●
●●
●●●●

●
●●●●
●●●●●
●●

●●●●●●
●●●●●●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●●●●●●●
●●
●●

●
●●
●
●
●
●●
●
●
●
●
●●●

●●
●●
●●●●●
●

●●

●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●

●●●●

●●
●●●

●
●●●
●
●●

●

●●
●
● ●●●●●●●
●

●
●

●●
●●●●
●●●●●
●●
●

●●●●
● ●●●●
●
●●●●●

●●●
●●
●
●●●

●
●
●
●
● ●●● ●●

●
●

●
●
●

●
●
●●●
●●

●●●

●
●●●●●●●●●

●

●
●
●

●

●

●

●
●
●●

●

●

●●●
●●
●

●

●

●●

●●
●

●
●
●

●●
●
●
●●●●
●
●●
●
●
●
●
●●●●

●

●●●●
●●
●
●
●
●
●
●
●

●●●●

●●●
●

●● ●

●

●
●
●●
●●

●
●
●●●●●

●
●●
●
●●
●

●●

●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●

●
●

●
●●
●
●
●

●

●
●

●

●
●

●

●
●
●●

●

●

●
●

●●●
●●●

●
●

●

●

●●●●●●

●

●●
●

●
●
●

●● ●

●

●●

●●

●

●●●●
●
●

●●
●●

●●●

●●●●

●●

●

●●

●●

●●●●●●●
●●

●
●
●
●
●●●●

●

●● ●

●
●

●●
● ●●

●●

●
●

●

●

●
●●
●●

●
●●●●

●●●●

●●

●●●●●●●●●●●●

●●●●
●●● ●●●●●●● ●●

●●●●●●●●●● ●

●●●●●

●

●

●
●●●

●
●

●

●●

●●

●
●
●●●●●●●

●●●●
●

●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●

●●
●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●
●●
●●●●●●

●●●●

●
●●●●●●●●
●●●●
●●●●
●

●●●●

●●
●●●●

●

●●
●●●

●

●●

●●

●

●●●●●

●●●
●●●
●●●●●●

●●●
●
●

●●●

●●●●●●●● ●●
●
●
●●●●●

●●●●●

●
●
●●

●●

●●●●●●●●●●●●●●●●

●

●

●●

●●●
●

●

●●●●●
●●●●
●●●
●●●●●●●●●●●●

●
●●●●● ●●●●●

●●
●
●
●
●
●●
●●●●
● ●

●
●●

●

●●●

●
●
●●●●

●
●●●
●●

●●
●●●

●

●●●●●●●●●●●●●●●●●●

●●●
●●●

●●
●
●●

●●
●

●

●●●
●●

●●

●●

●

●●

●
●
●
●●

●●

●
●

●●●

●●

●●

●●●● ●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●

●

●●

●

●

●●●

●
●● ●

●

●

●●●
●

●●

●●
●

●

●

●●
●
●●●

●●●●
●
●

●
●●

●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●
●●●●
●●●●●●●● ●●

●

●●

●●

●
●●

●●
●●●

●

●●
●●
●

●

●●●●●●●●
●
●
●

●
●●● ●●●●●●●●●●●
●●●●●

●●●●●●●●●
●

●●●●
●●●

●
●
●●
●●●●●

●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●

●
●●●●
●●●●●
●●

●●●●●●
●●●●●●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●●●●
●●●
●●

●
●●
●
●
●

●●
●
●
●
●
●●●

●●
●●
●●●●●
●

●●

●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●

●●●●

●●

●●●

●
●●●
●
●●

●

●●
●
● ●●●●●●●
●

●
●

●●
●●●●
●●●●●
●●
●

●●●●
● ●●●●
●
●●●●●

●●●
●●
●
●●●

●
●
●
●
● ●●● ●●

●
●

●
●
●

●
●
●●●
●●

●●●

●
●●●●●●●●●

●

●
●
●

●

●

●

●
●
●●

●

●

●●●
●●
●

●

●

●●

●●
●

●
●
●

●●
●
●
●●●●
●
●●
●
●
●
●
●●●●

●

●●●●
●●
●
●
●
●
●
●
●

●●●●

●●● ●

●● ●

●

●
●●
●
●
●

●

●
●

●

●
●

●

●
●
●●

●

●
●

●
●

●●

●

●

●

●

Transistors
Clock
Power
Performance
Performance/W

Moore’s law

Clock speed
(free lunch)

Moore's law

many integrated
cores

• Intel’s MIC (aka Intel Xeon Phi) is in its first generation

• 61 x86_64 cores @ ~1GHz

• 16GB of memory

• Coprocessor architecture

• Cache coherent, but no out of order execution

• 512 bit registers (8 double or 16 float)

• Memory per core: 256MB

• Maximum performance needs 4 threads per core: 64MB
per thread

7

Intel Xeon Phi

Nvidia Tesla

clock speed
(free lunch)

see G.Stewart, CHEP 2015

Markus Elsing

Marrakech: Andi, Andreas, Daniel, me, Heather

0

500

2010 2015ATLAS Offline Committers
(by quarter)

Rolf Seuster, TRIUMF

•software follows a natural life cycle
➡ building up the software for an experiment
➡ start of experiment operations and data taking
➡ data analysis and detector upgrades

• loss of software manpower in ATLAS/CMS
➡ (mostly) students and postdocs moved on to do physics

• same trend like in previous experiments
➡ like CDF/D0 Run-2, LHC upgrade program is ambitious

• need to find sufficient manpower to develop the
software for the upgrade (some positive trend in ATLAS)

CMSSW developers vs year

P.Elmer et al., 2014

CMSSW
project
start

Software and Manpower

8

ATLAS developers vs year
(integrated over 3 months)

P.Elmer, L.Sexton-Kennedy, C.Jones, ICHEP 2007

CDF Run-2 BaBar

Markus Elsing

Marrakech: Andi, Andreas, Daniel, me, Heather

•examples for common tracking software
➡ AIDA tracking - primarily targeting ILC / FCC
➡ GenFit - an implementation of standard track fitting techniques (Belle-II)
➡ Millepede - track alignment page
➡ CMS vertexing suite - package of standard vertexing codes (CMS, Belle-II,...)
➡ VDT, SMatrix, Eigen - vector algebra and math libs

• current attempts for a common tracking implementation
➡ AIDA is building one common solution
➡ plan of ATLAS tracking group

• make tracking/vertexing/fastsim suite
public for FCC, builds on Gaudi/Athena

➡ GenFit is aiming at a common solution

• are there obstacles ?
➡ experiments already have a solution
➡ integration means picking a data model

• determines Jacobians in math formulars
➡ integration means framework interfaces
➡ best physics performance ?

• pattern strategy depends on experiment

Common Tracking Software ?

13
fr

om
 G

ra
em

e
St

ew
ar

t

geometry

navigation

propagation

track fitting

vertexing

seeding road finding combinatorial
Kalman Filter

alignment fast
simulation

data model

application framework

Markus Elsing

Marrakech: Andi, Andreas, Daniel, me, Heather

Why a "Tracking Software Forum" ?

•some observations:
➡ major workshop like Connecting the Dots is filling a hole

• not many other tracking oriented conferences and workshops
➡ we probably should think about schools on tracking and reconstruction

• we need to invest in future experts (and give them career perspectives)

•we felt we as well need a more regular forum to discuss
developments in tracking software in HEP
➡ complement major (yearly) workshops like CTD and technical Concurrency Forum
➡ enable exchange of software ideas and concepts, share best practices
➡ a by-product of this forum may be increased code re-usage

• at last CTD not much enthusiasm expressed across all experiments (but FCC) to
migrate to something like a common tracking software stack

• but common software projects may grow naturally out of needs we may identify
and we do have some common developments alreadystart by offering a common

➡ provide repository, build system, etc., as an offer to the community to host
candidate package that people like to share (see talk from Benedikt)

14

Frank Gaede, DESY
Common Track Reconstruction Software Forum

CERN, 2. Dec. 2015

Linear Collider Track
Reconstruction Tools

F.Gaede, DESY, Track Reconstruction Forum 3

Introduction

● developed new C++ tracking tools for Linear Colliders
– to replace old F77 (!) code from LEP
– successfully used for ILD DB (2011), CLIC CDR (2012)

● partly done in context of AIDA-WP2 project
– goal: eventually have a generic HEP tracking toolkit that could

be shared by all LC detector concept groups (and possibly
others)

– allowing to transparently use different fitting algorithms
– provide toolkit for pattern recognition
– have well defined and easy to use interface to detector

geometry
● code developed in context of ILD w/ generality in mind

F.Gaede, DESY, Track Reconstruction Forum 8

DD4hep - DDRec for Tracking

● DD4hep: detector geometry
description for HEP

● AIDA project (CERN/DESY)

● support full experiment life cycle

● one source of geometry for

● simulation, reconstruction, analysis,
event displays,...

● extension mechanism for user data
→ DDRec

● simple detector description classes:
extend, layout, #layers,..

● cellID ↔ position

● material properties (point, line)

● tracking Surfaces

F.Gaede, DESY, Track Reconstruction Forum 9

DDRec surfaces for tracking

– tracking needs special interface to
geometry

– measurement and dead material
surfaces (planar, cylindrical,
conical)

– surfaces attached to volumes in
detailed geometry model

● u,v, origin and normal
● inner and outer thicknesses and material

properties
● local to global and global to local

coordinate transforms:
● (x,y,z) ↔ (u,v)

F.Gaede, DESY, Track Reconstruction Forum 15

Summary - what we can offer

● the linear collider community has a complete set of
tracking tools that are

– lightweight compared to LHC
– many pattern recognition algorithms based on

● topological clustering, Cellular Automatons, conformal mapping
● partly depending on LCIO and DD4hep - partly standalone

– track fitting tools that
● use DD4hep Surfaces as geometry model
● simple interfaces for tracker hits and tracks
● framework independent

– used currently by three detector concepts (ILD, CLICdp, SiD)
– flexible for adaptation to new detector models

● in particular if they are described in DD4hep

F.Gaede, DESY, Track Reconstruction Forum 16

Outlook - what we like to get

● we are continuously trying to improve our tracking
code, e.g.

– currently navigation is somewhat simplistic and brut-force
● → would like to benefit from ATLAS code for geometry navigation

– treatment for non-homogeneous B-fields is not yet optimal
● → eventually we need a Runge-Kutta solver for arbitrary B-fields

– implement parallelization where possible
● → want to benefit from work done for LHC

– use this forum for exchange of ideas

● would like to see more common HEP tracking software tools
● ideally under the umbrella of the HSF

ATLAS Tracking Software:
history, status & prospects
A. Salzburger (CERN) on behalf of the ATLAS Tracking SW

A.
 S

al
zb

ur
ge

r -
 A

TL
AS

 T
ra

ck
in

g
So

ftw
ar

e
- S

ta
tu

s
an

d
Pr

os
pe

ct
s

- C
ER

N
 C

om
m

on
 T

ra
ck

in
g

W
S,

 D
ec

 0
3/

20
15Current structure - from reality to repository

6

Inner Detector

Solenoid

Calorimeter Muon System

Toroid

Tracking

Geometry
(TrkDetDescr)

Event Data
Model
(TrkEvent)

Extrapolation
(TrkExtrapolation)

Fitting
(TrkFitter)

Calibration,
general

(TrkTools)

Alignment
(TrkAlignment)

InnerDetector

EDM
(InDetRecEvent)

Geometry
(InDet 

TrackingGeometry)

Tools
(InDetRecTools)

MuonSpectrometer

EDM
(MuonRecEvent)

Geometry
(Muon 

TrackingGeometry)

Tools
(MuonRecTools)

Calorimeter

EDM Geometry
(Calo 

TrackingGeometry)

A A A A A

A A A A

A … embedded in Gaudi/Athena structure with AlgTools/Algorithms/Services

A.
 S

al
zb

ur
ge

r -
 A

TL
AS

 T
ra

ck
in

g
So

ftw
ar

e
- S

ta
tu

s
an

d
Pr

os
pe

ct
s

- C
ER

N
 C

om
m

on
 T

ra
ck

in
g

W
S,

 D
ec

 0
3/

20
15ATLAS Tracking Geometry - in a sketch (1)

7

Trk::Surface class acts as a representation of a detector element  
(proxy mechanism allows to bind it to basically all geometry models)

for measurements
and track parameterisation

A.
 S

al
zb

ur
ge

r -
 A

TL
AS

 T
ra

ck
in

g
So

ftw
ar

e
- S

ta
tu

s
an

d
Pr

os
pe

ct
s

- C
ER

N
 C

om
m

on
 T

ra
ck

in
g

W
S,

 D
ec

 0
3/

20
15ATLAS Tracking Geometry - in a sketch (2)

8

Trk::Surface class acts as a base for Trk::Layer

for grouping objects, e.g
detector elements on layers

A.
 S

al
zb

ur
ge

r -
 A

TL
AS

 T
ra

ck
in

g
So

ftw
ar

e
- S

ta
tu

s
an

d
Pr

os
pe

ct
s

- C
ER

N
 C

om
m

on
 T

ra
ck

in
g

W
S,

 D
ec

 0
3/

20
15ATLAS Tracking Geometry - in a sketch (3)

9

Trk::Surface class acts as a (shared) boundaries for Trk::Volumes

full connective geometry,
i.e. every boundary surface is  
attached to the next volume(s)

navigation through geometry
comes as an intrinsic feature
of the extrapolation process.

Volume A

Volume B

A.
 S

al
zb

ur
ge

r -
 A

TL
AS

 T
ra

ck
in

g
So

ftw
ar

e
- S

ta
tu

s
an

d
Pr

os
pe

ct
s

- C
ER

N
 C

om
m

on
 T

ra
ck

in
g

W
S,

 D
ec

 0
3/

20
15ATLAS Tracking Geometry - in a sketch (4)

10

Trk::Volumes exist also in a dense flavour (e.g. for calorimeter description)

ATLAS has developed a  
special propagation engine for
propagation through dense material
with an instantaneous integration of 
material interactions

STEP_Propagator
 

Volume A

Volume B

ATL-SOFT-PUB-2008-003

A.
 S

al
zb

ur
ge

r -
 A

TL
AS

 T
ra

ck
in

g
So

ftw
ar

e
- S

ta
tu

s
an

d
Pr

os
pe

ct
s

- C
ER

N
 C

om
m

on
 T

ra
ck

in
g

W
S,

 D
ec

 0
3/

20
15Intermezzo 1 - Fast Track Simulation (Fatras)

14

‣ Embedded navigation with Extrapolation engine is a fast track simulation
- simply changing stochastic material effects integration into MC based one

- using the reconstruction geometry as a simulation geometry is a common concept  
for fast simulation

ATL-SOFT-PUB-2008-001

A.
 S

al
zb

ur
ge

r -
 A

TL
AS

 T
ra

ck
in

g
So

ftw
ar

e
- S

ta
tu

s
an

d
Pr

os
pe

ct
s

- C
ER

N
 C

om
m

on
 T

ra
ck

in
g

W
S,

 D
ec

 0
3/

20
15Some concluding remarks

‣ Is it time to think about reconstruction toolkits ?
- simulation (Geant) has done this 30 years ago during LEP

it was simply not possible for experiments to write their full simulation programs  
(needed a toolkit)

‣ (Track) reconstruction will be one of the most challenging aspects
- already for Phase-2 upgrade

- even more for FCC(-hh)

‣ New concepts, players and R&D is needed
- and these are also coming in ! 
 
e.g. Machine learning approaches for HEP:  
IM LHC Maching Learning WG Meeting, tomorrow

24

Tracking software in LHCb
Silvia Borghi, Michel De Cian

on behalf of the LHCb collaboration

Common Track Reconstruction Software Forum, December 3rd 2015

Pa
tt

er
n

re
co

gn
it

io
n

• Pattern recognition algorithms are ”hand-knitted” for each type of track.
Continuous development over the last 10 years (and ongoing).

• However, (almost) no common framework. Ideas were shared, but most
of the codes have standalone implementations for most of their tasks.

• Heavy use of parametrisations, no Kalman filter used. Use (pseudo-) χ2

fits to discriminate good from bad tracks.

• Single threaded CPU implementations, started using vectorisation
(mostly Agner Fog’s vector class) and vdt, not used on wide scale (for
now...).

• No GPU (at the moment).

5 of 10

Tr
ac

k
Fi

tt
in

g

• Kalman filter used for track fitting. Using simplified geometry (averaged
material description) to speed up fitting (full geometry available if
needed).

• Neural net (TMVA trained) for reducing number of fake tracks after
Kalman filter, improved ”by hand” to make it faster (mostly activation
function).

• Track selection performed with loose χ2 cut and cut on neural net output.

• Kalman filter is a package, that can be used for all track types: Run I, II and
upgrade without much adaptation.

• Speed has been improved, still large contributor to timing in track
reconstruction.

6 of 10

Common Software Infrastructure

Benedikt Hegner
(CERN)

Common Track Reconstruction Software Forum
3.12.2015

● Enable collaborative working with making your source code
available

● Allow collaborative working by putting your software under a proper
license

● Support collaborative working by setting up build and testing
infrastructures and nightlies

● Avoid “impedance mismatch”
○ how much time do we loose on making different tools with

different conventions work w/ each other

3

What to do for collaborative working

● Git is state-of-the-art for code management

● Many free services around one could use, e.g.
○ GitHub
○ GitLab at CERN

● Both provide nice features like easy forking, merge requests, code
review, etc

● The HSF is an organization on GitHub
○ but obviously any public place for code does the job

4

Making source code available

● Our community is very bad when it comes to licensing
○ Often forgotten or ignored
○ Wrongly applied

● Should make sure new efforts do it properly from the start

● Boundary conditions given by
○ The fact that things have to stay open
○ Your personal take on the free software movement
○ Software you take advantage of and their licenses
○ Rules of your collaboration and employer

● Licenses to consider
○ GPL - if your and all software using it should stay free
○ LGPL - if your software and all changes to it should stay free
○ Apache2 - if you want to provide your software w/o little constraints on people using it
○ Use other licenses only if there is a strong reason for it

● Some more information on licenses in HEP available here and here

5

Licenses

● To share software with others one has to make sure it compiles, runs and yields proper
physics…

… outside the environment it was originally developed in!

● Multiple free nightly build services for open-source projects available, like Travis CI
○ Nicely integrate with GitHub / GitLab
○ Allow compilation and simple tests

● They do not easily cover
○ (CPU) performance studies or validation do not fit into that model
○ Multiple platform support
○ “Exotic” machines
○ Direct debugging of failures

● Doing it properly involves some boring setup and maintenance work
○ People rarely have time for that!

● Idea by HSF contributors is to set up a basic build and test cluster at CERN the various tracking
software projects can take advantage of

○ Do the work only once!
○ Taking advantage of jenkins and docker containers
○ Allowing interactive access for debugging

6

Development infrastructure and nightly builds

