Measurement of the HZZ tensor structure in $pp \rightarrow H \rightarrow ZZ^* \rightarrow 4\ell$ decays with the ATLAS detector

Katharina Ecker

Supervisor: Sandra Kortner

Max-Planck-Institut für Physik

DPG 2016 (29.02-04.03. 2016, Hamburg)

Properties of the Higgs boson

 Spin-0: Boson is scalar particle, as predicted by the Standard Model (SM).

ATLAS: Physics Letters B 726 (2013) 120–144 und CMS: CMS PAS HIG-14-014

2 CP properties of the discovered boson?

CP: Combination of parity and charge conjugation.

- CP even eigenstate CP⁺? SM
- No CP eigenstate? Mixture of CP even and CP odd.
- → CP violation in Higgs sector could be explanation for matter antimatter asymmetrie.

The $H \to ZZ^* \to 4\ell$ decay channel

 Small branching ratio, but clean signal

Higgs decays at m_H=125GeV

http://www.quantumdiaries.org/wp-

content/uploads/2012/06/pie_chart.jpg

- Backgrounds
 - Irreducible SM ZZ*
 - 2 Reducible Z + jets
- Four final state leptons can be fully reconstructed by the detector: $\Rightarrow H \rightarrow ZZ^* \rightarrow 4\ell$ Channel suited for property measurements

Katharina Ecker (MPP)

Measurement HZZ tensor structure

CP measurement in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel

 Theoretical basis: EFT implemented in Higgs characterisation model (MadGraph5_aMC@NLO)

$$\mathcal{L}_{0}^{V} = \begin{cases} \cos(\alpha)\kappa_{\mathrm{SM}} \left[\frac{1}{2}g_{HZZ}Z_{\mu}Z^{\mu} + g_{HWW}W_{\mu}^{+}W^{-\mu}\right] & \mathrm{BSM} \ \mathrm{CP}\text{-even} \\ -\frac{1}{4}\frac{1}{\Lambda} \left[\cos(\alpha)\kappa_{HZZ}Z_{\mu\nu}Z^{\mu\nu} + \sin(\alpha)\kappa_{AZZ}Z_{\mu\nu}\tilde{Z}^{\mu\nu}\right] & \mathrm{BSM} \ \mathrm{CP}\text{-odd} \\ -\frac{1}{2}\frac{1}{\Lambda} \left[\cos(\alpha)\kappa_{HWW}W_{\mu\nu}^{+}W^{-\mu\nu} + \sin(\alpha)\kappa_{AWW}W_{\mu\nu}^{+}\tilde{W}^{-\mu\nu}\right] \end{cases} X_{0}.$$

• CP violation: Mixture of CP even and CP odd.

 \Rightarrow Search for non-SM admixtures in $H \rightarrow ZZ^* \rightarrow 4\ell$ decays.

Observables sensitiv to BSM admixtures in $H \rightarrow ZZ^* \rightarrow 4\ell$

• $H \rightarrow ZZ^* \rightarrow 4\ell$ statistically limited: Which observables are available at a dataset of 10 fb⁻¹ (LHC dataset expected in summer 2016)?

Katharina Ecker (MPP)

Measurement HZZ tensor structure

Expected Yields per decay channel for $\mathcal{L} = 10 \text{ fb}^{-1}$ and $p_{T,j} > 25 \text{ GeV}$

Events weight all:					
	4mu	4e	2mu2e	2e2mu	all
1 - all	5.5532120494	3.1357608068	3.3040145756	3.6708580523	15.6645036604
2 - masscut	5.29718151	2.9022997275	3.1158061013	3.4280807881	14.7437749995
3 - 0-jet	2.1331071601	1.1671558112	1.2290512989	1.4434581774	5.9727395387
4 - 1-jet	1.7164158118	0.9851132512	1.0498209462	1.1236413897	4.8746922278
5 - >=2-jet	1.447969676	0.7499857894	0.8369308646	0.8612145744	3.8958944764
6 - >=2-jet+mjj>130GeV	0.8263282444	0.4423183359	0.4802831354	0.504548895	2.2535055362

Fit model for $\mathcal{L} = 10 \, \text{fb}^{-1}$

- Shape analysis in 0-jet category not possible with statistics at $\mathcal{L} = 10 \text{ fb}^{-1}$
- ⇒ Combined fit of expected number of events in 0-jet and 2-jet categories: {0-jet} x {2-jet}
- Number of expected events for ggF and VBF are a function of EFT parameters:

$$N_{ggF} = f(cos(\alpha), \kappa_{SM}, \kappa_B SM)$$

 $N_{\mathsf{VBF}} = f(\cos(\alpha), \kappa_{SM}, \kappa_B SM)$

Assumption: 0-jet category consists only of ggF events

 $N_{\text{0-jet}} = N_{\text{0-jet,ggF}}$

Assumption: In 2-jet category ttH scales as ggF, and VH scales as VBF

 $N_{\text{2-jet}} = N_{\text{2-jet},\text{ggF+ttH}} + N_{\text{2-jet},\text{VBF+VH}}$

 Simplified model: Only looking at SM and BSM cp odd mixtures; no backgrounds added so far

BSM MC truth samples

Generator: MG5 at LO interfaced to Pythia8 for BSM sample production

ggF	κ_{Hqq}	κ_{SM}	κ_{Azz}	$\cos \alpha$	σ X BR [pb]
hggsm	1.0	1.0	0.0	1.0	0.00205
hggazz	$\sqrt{2}$	1.0	13.938	$\frac{1}{\sqrt{2}}$	0.00114
hggsmazz	$\sqrt{2}$	$\sqrt{2}$	13.938	$\frac{1}{\sqrt{2}}$	0.002156

- ggF cross section at NNLO QCD and NLO EW from LHC cross section working group: 43 pb
- ightarrow K-factor LO MG5 to LHXSWG of 2.7

VBF $\kappa_{SM} \quad \kappa_{Azz} = \kappa_{Aww} \quad \cos \alpha \quad \sigma \text{ X BR [pb]}$

- VBF cross section at NNLO QCD and NLO EW from LHC cross section working group: 3.7 pb
- $\rightarrow\,$ K-factor LO MG5 to LHXSWG of 2.7
- All BSM samples will be scaled with $\frac{N_{SM,PowHeg}}{N_{SM,MG5}}$
- ⇒ This assumes that the scale factor for LO to NNLO production and $\frac{\epsilon_{SM,reco}}{\epsilon_{SM,truth}}$ is consant for all BSM samples

Final distribution of expected number of events: dummy

Summary

- Tensor structure measurement has information available from shape and rate predictions
- Simplified model shown in order to extract BSM parameter in the $H \to ZZ^* \to 4\ell$ channel with an available dataset of $\mathcal{L} = 10 \text{ fb}^{-1}$
- Only rate information used so far and backgrounds neglected
- Plan: Use model in order to extract sensitivity to different BSM parameters in $H \to Z Z^* \to 4 \ell$