

Upgrade of the MAGIC telescopes micro power LIDAR system

Dominik Müller, C. Fruck, R. Mirzoyan, J. Hose For the MAGIC Collaboration February, 29th 2016

MAGIC Telescopes

MAGIC Telescopes on the Canary Island La Palma

Imaging Atmospheric Cherenkov Astronomy

MAGIC LIDAR System

Photograph of the LIDAR System on the MAGIC Site:

Working Principle:

Goals of the Upgrade

- 1. Extending the measurement range
 - a) To short Distances
 - Higher dynamic range of readout electronics
 - Higher amplifier bandwidth
 - a) To long Distances
 - Powerful Laser
 - Better S/N for more reliable photon counting
- 2. Better humidity protection

Transmitter Module

High Voltage Module

Connector to PC

ADC for Monitoring

HPD Signal Shape

Setup:

- HV: -8 kV
- Bias: 422 V
- → Gain: 150 000

Results:

- Good coincidence
- FWHM 2.3 ns

- Channel 1 10 mV
- Up to 6 photoelectrons resolved

10 ns

LIDAR Raw Signal

Full Range:

Far-Field:

Near-Field:

Single Photoelectron:

LIDAR Return

Range Corrected LIDAR Return:

Conclusion & Outlook

Conclusion:

- Construction of new transmitter, detector and HV module
- Implementation of control electronics for HV module
- Successful test of the new detector on site

Outlook:

- Installation of the new powerful LASER
- Optimization of detector optics

Charge Distribution

1 ph.e Charge Distribution of the HPD for different Bias Voltages:

Cloud Analysis

Extinction Coefficient:

$$\propto_{aer} (h) = \sqrt{\frac{C_1}{C_2}} \cdot \frac{S(h) - \overline{S}_{mol}(h)}{\int_{h_1}^{h_2} S(h) - \overline{S}_{mol}(h)}$$

Atmospheric Transmission:

$$\tau_{aer}(h) = \int_{h_0}^{h_1} \propto_{aer} (h') dh'$$

