Measurement of the HZZ tensor structure in $pp \rightarrow H \rightarrow ZZ^* \rightarrow 4\ell$ decays with the ATLAS detector

Katharina Ecker

Supervisor: Sandra Kortner

Max-Planck-Institut für Physik

DPG 2016 (29.02-04.03. 2016, Hamburg)

Katharina Ecker (MPP)

Properties of the Higgs boson

 Spin-0: Boson is scalar particle, as predicted by the Standard Model (SM).

ATLAS: Physics Letters B 726 (2013) 120–144 and CMS: CMS PAS HIG-14-014

2 CP properties of the discovered boson?

CP: Combination of parity and charge conjugation.

- CP even eigenstate CP⁺? SM
- No CP eigenstate? Mixture of CP even and CP odd.
- → CP violation in Higgs sector could be explanation for matter antimatter asymmetrie.
 - Additional, non-SM couplings in HVV vertex?

CP measurement in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel

- Theoretical basis: Effective field theory (EFT) implemented in Higgs characterisation model (arXiv:1306.6464).
- Effective Lagrangian for the interaction of scalar and pseudo-scalar states with vector bosons:

$$\begin{split} \mathcal{L}_{0}^{V} = & \left\{ c_{\alpha}\kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \\ & - \frac{1}{4} \left[c_{\alpha}\kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha}\kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu} \right] \\ & - \frac{1}{2} \left[c_{\alpha}\kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha}\kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \tilde{A}^{\mu\nu} \right] \\ & - \frac{1}{4} \left[c_{\alpha}\kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha}\kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu} \right] \\ & - \frac{1}{4} \frac{1}{\Lambda} \left[c_{\alpha}\kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha}\kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] \\ & - \frac{1}{2} \frac{1}{\Lambda} \left[c_{\alpha}\kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha}\kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \\ & - \frac{1}{2} \frac{1}{\Lambda} \left[c_{\alpha}\kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha}\kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \\ & - \frac{1}{\Lambda} c_{\alpha} \left[\kappa_{H\partial\gamma} Z_{\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{H\partial Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + \kappa_{H\partial W} (W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c.) \right] \right\} \mathcal{X}_{0} \end{split}$$

- CP violation: Mixture of CP even and CP odd.
- \Rightarrow Search for non-SM admixtures in $H \rightarrow ZZ^* \rightarrow 4\ell$ decays.

Katharina Ecker (MPP)

The $H \to ZZ^* \to 4\ell$ decay channel

Small branching ratio, but clean signal.

Phys. Rev. D 91, 012006 (2015)

Katharina Ecker (MPP)

Measurement HZZ tensor structure

Observables sensitiv to BSM admixtures in $H \to ZZ^* \to 4\ell$

• $H \rightarrow ZZ^* \rightarrow 4\ell$ statistically limited: Which observables are available at the ATLAS expected dataset in 2016 - $\mathcal{L} \approx 30 \text{ fb}^{-1}$ at $\sqrt{s} = 13 \text{ TeV}$?

Expected Yields for a SM Higgs boson with $m_H = 125 \text{ GeV}$ in $H \to ZZ^* \to 4\ell$ with $\mathcal{L} = 30 \text{ fb}^{-1}$ at $\sqrt{s} = 13 \text{ TeV}$

*****Events exp. all production modes****

	all
 Full selection, full mass range 	47
2 - <i>m</i> _{4ℓ} : [115-130] GeV	44
3 - 0-jet	18
4 - 1-jet	15
5 - >=2-jet	10
6 - >=2-jet+mjj>130GeV	7

- 11

Fit model for high and low luminosities

- **1** High luminosity (100-300 fb^{-1}):
 - Expected number of events (in each bin of a discriminant kinematic distribution) can be predicted for any configuration of BSM parameters:

$$\begin{split} N_{ggF}^{\text{Bin i}} &= f_{ggF}(\cos(\alpha), \kappa_{\text{Hgg}}, \kappa_{\text{Agg}}, \kappa_{\text{SM}}, \kappa_{\text{HZZ}}, \kappa_{\text{AZZ}}, \kappa_{\text{H}\gamma\gamma}, \kappa_{\text{A}\gamma\gamma}, \kappa_{\text{HZ}\gamma}, \kappa_{\text{AZ}\gamma}, \kappa_{\text{H}\partial\gamma}, \kappa_{\text{H}\partialZ}) \\ N_{VgF}^{\text{Bin i}} &= f_{VBF}(\cos(\alpha), \kappa_{\text{SM}}, \kappa_{\text{HZZ}}, \kappa_{\text{AZZ}}, \kappa_{\text{HWW}}, \kappa_{\text{AWW}}, \kappa_{\text{H}\gamma\gamma}, \kappa_{\text{A}\gamma\gamma}, \kappa_{\text{HZ}\gamma}, \kappa_{\text{AZ}\gamma}, \kappa_{\text{H}\partial\gamma}, \kappa_{\text{H}\partialZ}, \kappa_{\text{H}\partialW}) \end{split}$$

- The predictions are obtained via analytic morphing procedure (see next slide).
- The fit to the observed data is performed simultaneously in the 0-jet and the 2-jet category.

$$\mathcal{L}(\cos(\alpha), \kappa_{\text{SM}}, \kappa_{\text{BSM}}) = \prod_{c=1}^{n_{\text{cat}=2}} \prod_{i=1}^{n_{\text{bins}}} \text{Poisson}\left(n_i | \nu_i(\cos(\alpha), \kappa_{\text{SM}}, \kappa_{\text{BSM}})\right)$$

with n_i the number of observed and $\nu_i(\cos(\alpha), \kappa_{\rm SM}, \kappa_{\rm BSM})$ the number of predicted events in each bin.

- 2 Simplifications for low luminosity (\sim 30 fb⁻¹)
 - Statistics too small for the study of kinematic distributions, thus fitting only the expected total rates of events (simultaneously for 0-jet and 2-jet categories).
 - Reducing the number of free BSM parameters in the fit, studying one parameter at a time.

Creating signal model with morphing method

- Model: Mixing of SM with one additional BSM operator; here: BSM CP-odd κ_{AZZ}.
- Morphing method (see talk by Carsten Burgard) utilized to create signal model for $N_{\rm ggF}$ and $N_{\rm VBF}.$

$$\begin{split} N_{\text{ggF}} &= f_{\text{ggF}}(\cos(\alpha), \kappa_{\text{Hgg}}, \kappa_{\text{SM}}, \kappa_{\text{Azz}}) \\ N_{\text{VBF}} &= f_{\text{VBF}}(\cos(\alpha), \kappa_{\text{SM}}, \kappa_{\text{Azz}}, \kappa_{\text{Aww}}) \end{split}$$

- Generator: MadGraph5 (at LO), interfaced to Pythia8 for showering.
- Assumption: For VBF production BSM CP-odd coupling to Z and W-Bosons is correlated

gg⊢	κ_{Hgg}	κ_{SM}	κ_{Azz}	$\cos \alpha$
hggsm	1.0	1.0	0.0	1.0
hggazz	$\sqrt{2}$	1.0	13.938	$\frac{1}{\sqrt{2}}$
hggsmazz	$\sqrt{2}$	$\sqrt{2}$	13.938	$\frac{\sqrt{1}}{\sqrt{2}}$
VBF	κ_{SM}	$\kappa_{Azz} = \kappa_{Aww}$		$\cos \alpha$
sm	1.0	0.0		1.0
smkavvm1	1.0	-32.5203		0.447214
smkavv1	1.0	15.0		$\frac{1}{\sqrt{2}}$
smkavv2	1.0	5.0		$\frac{\frac{v_1^2}{\sqrt{2}}}{\sqrt{2}}$
smkavvm2	1.0	-2.5		$\frac{\frac{1}{1}}{\sqrt{2}}$

Number of expected events of $H \to ZZ^* \to 4\ell$ decays in 0-jet and 2-jet categories for 30 fb^{-1} at $\sqrt{s} = 13$ TeV

Summary

- Tensor structure measurement has information available from shape and rate predictions
- Simplified model shown in order to extract BSM parameter in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel with an available dataset of $\mathcal{L} = 30 \text{ fb}^{-1}$
- Only rate information used so far and backgrounds neglected
- Plan: Use model in order to extract sensitivity to different BSM parameters in $H \to Z Z^* \to 4 \ell$