Search for Dark Matter in association with a Higgs boson at $\sqrt{s}=$ 13 TeV with the ATLAS Detector

Rainer Röhrig

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

DPG Hamburg - Frühjahrstagung 01.03.2016

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

► Search for events with a large missing transverse energy $(=E_T^{\text{miss}})$ in association with the Standard Model (SM) Higgs boson, where $h \rightarrow b\bar{b}$.

Event signature: 2 *b*-jets and large E_{T}^{miss} .

- + Possible to probe the couplings of the Higgs boson to dark matter (DM).
- + Channel is sensitive to small and large masses of DM particles.

What are the models to produce such non Standard Model signatures?

Effective Field Theories (EFT):

- Contact operators describe the point-like SM-DM interaction.
- + Minimal model dependence.
- + Limited number of free parameters: m_{χ} and Λ (energy scale of interaction).
- $-\Lambda >>$ momentum transfer: validity at higher \sqrt{s} ?

Simplified Models:

- New massive mediator particle which mediates the DM-SM interaction.
- + Descriptive theory, not limited by momentum transfer.
- More free parameters, e.g. $m_A, m_{Z'}, m_{\chi}, \tan \beta, g_Z$.

Rainer Röhrig 3/11

Final State Topology of the Jets from Higgs Decays

Event Selection - 0 Lepton Signal/Control Region

Rainer Röhrig 5/11

- The final mass distributions $m_{jet_1jet_2}$ (left) and m_{Jet} (right).
- ▶ Control region dominated by Z+jets and W+jets processes.
- Very good agreement between data and simulation.

Event Selection - 1/2 Lepton Control Regions

- Control regions are used to estimate the backgrounds: V+jets and tt̄.
- Same selection as for the 0 lepton CR/SR, but requiring 1 or 2 leptons.
- ▶ 1 lepton control region to estimate W+jets and $t\bar{t}$.
 - $t\bar{t}$ is mainly present in the 1 and 2 *b*-tag regions.
- ▶ 2 lepton control region to estimate $Z(\rightarrow \nu\nu)$ +jets.

Control regions are designed to:

- Select 1 isolated muon.
- Cut on E_T^{miss} is modified: E_T^{miss} + p_T^{muon} > 500 GeV. (to emulate processes where a muon is not reconstructed).
- 0 *b*-tag region: main contribution is *W*+jets.
- 1 b-tag region: main contribution is tt
 .

Control region is designed to estimate the $Z \rightarrow \nu \nu + jets$ background.

- Use single lepton triggers instead of $E_{\rm T}^{\rm miss}$ trigger.
- Select two isolated and oppositely charged leptons (=e or μ).
- Cut on $p_{\rm T}^{\ell\ell} > 500 {\rm GeV}$ (emulating E_{T}^{miss} in $Z \rightarrow \nu \nu$ events.)

Merged regime

Good agreement between data and simulation.

> Statistical interpretation of data is obtained via simultaneous fits to the mass spectra in all signal and all control regions.

arXiv:1510.06218

For small m_{χ} , values up to

 $\Lambda \approx 270$ GeV are excluded.

EFT Model

- Limits are set in the $m_A m_{Z'}$ plane.
- ▶ m_{Z'} = 700 − 1300 GeV is excluded for m_A up to 350 GeV.

Looking forward to the first run 2 results!

- The LHC searches for dark matter are competitive with and complementary to the direct and indirect detection experiments.
- After the discovery of the Higgs boson in 2012, the search for dark matter in association with the Higgs boson (mono-Higgs) becomes an interesting topic.
- Constraints on various dark matters models possible already with a few fb⁻¹.
- ▶ Data taking at $\sqrt{s} = 13$ TeV will restart soon and the discovery of dark matter at the LHC is hopefully around the corner.

Backup

Rainer Röhrig 1/9

Evidence for Dark Matter

Presence of dark matter inferred from the observation of its gravitational interactions.

Rotation curves of spiral galaxies and of clusters of galaxies

Gravitational lensing of galaxy clusters

Cosmic microwave background

 $\begin{array}{l} \mbox{Structure formation in the early} \\ \mbox{universe,} \approx 26.8\% \mbox{ of the content of} \\ \mbox{ the universe is DM} \end{array}$

Rainer Röhrig 2/9

The ATLAS Detector

Inner Detector:

Reconstruction of decay vertices and particle tracks. Important for b-tagging and for the measurement of p_T^{miss} .

Hadronic Calorimeter:

Reconstruction of jets, and measurement of their energy. Measurement of $E_{\rm T}^{\rm miss}$.

Rainer Röhrig 3/9

Event Display

Rainer Röhrig 4/9

0 btag

2 btag

0 btag

2 btag

Cross Sections

m_{z'} [GeV] Rainer Röhrig 9/9

10⁴

- 400

600

- 800

1200 1400

10

10³

150 1000

m_{z'} [GeV]