Search for the Higgs boson in H → bb decays with Run-2 data from the ATLAS detector at the LHC

DPG Frühjahrstagung Hamburg

Feb 29, 2016

Ilona Weimer

Supervised by Felix Müller

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Motivation

- The Higgs boson with $m_H = 125$ GeV was discovered in 2012 with the experiments ATLAS and CMS at the Large Hadron Collider at CERN.
- Decay $H \rightarrow bb$ has the highest branching ratio, but could not be observed yet.
 - \rightarrow Significance from **Run-1** (ttH, WH, ZH productions combined)

ATLAS: 1.7, CMS: 2.0, combined: 2.6

• The main challenge is the high background.

In this study:

 Optimizing the analysis with Run-2 data in WH, H → bb channel using topologies with two nearby b-quarks within one large size jet

WH, $H \rightarrow bb$: signal and backgrounds

signal: associated production in 1 lepton channel

dominant backgrounds:

Event Selection

Selection of 1-lepton events QCD suppression Selection of H → bb decays

C1: Single lepton trigger, exactly one lepton Events (normalized) ATLAS Work in progress Ldt = 3.2 fb⁻¹, vs = 13 TeV C2: Missing transverse energy > 30 GeV0.8 C3: W transverse momentum > 120 GeV 0.6 C4: At least two jets VH(bb) background C5: Exactly two b-tagged jets 0.4 C6: $|\min \Delta \phi(MET, j1, j2, j3)| > 1$ 0.2 C7: 95 < m(bb) [GeV] < 140 for signal region 0 C1 C2 C3 C4 C5 C6 C7 Cuts Significance $Z = \sqrt{2 \cdot ((s+b) \cdot \ln \left(1 + \frac{s}{b}\right))}$ N(signal) N(background) -s $p_{\tau}(W) > 250 \text{ GeV}$ 1.512 28.394 0.281 $p_{\tau}(W) < 250 \text{ GeV}$ 6.625 784.0 0.236

Invariant mass of the b-jet system

Events with Higgs jet candidates

- The b-jets start to merge for a Higgs boson with $p_T(H) > 250 \text{ GeV}$
- The decay products form one large size jet

Selection of large-R jets (J) containing two b-jets (b1, b2): "Higgs jet" candidates

- $\Delta R(J, b1) < 1$. and $\Delta R(J, b2) < 1$.
- For $p_T(W) < 250 \text{ GeV} \rightarrow 1.5 \%$ of events contain Higgs jets
- For $p_T(W) > 250 \text{ GeV} \rightarrow 59.0 \%$ of events contain Higgs jets

Expected number of events

ATLAS Work in progress, Integrated luminosity = 3.2 fb⁻¹, $p_T(W) > 250 \text{ GeV}$

	N(signal)	N(bkg)	Z
Standard selection	1.512	28.394	0.281
With Higgs jet	1.170	16.46	0.285
Without Higgs jet	0.342	11.93	0.098
Combined			0.301

- \rightarrow Improvement of significance for events with Higgs jets
- $\rightarrow\,$ Overall significance improvement by 7 %
- → Substructure within the Higgs jet candidates can further improve the discrimination between signal and background

Jet substructure: N-subjettiness

N-subjettiness
$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min(\Delta R_{1,k}, \Delta R_{2,k}, \dots, \Delta R_{N,k})$$
 where $d_0 \equiv \sum_k p_{T,k} \cdot R$

- a measure for the probability that a large-R jet is composed of exactly N subjets
- uses the angles between the jet constituents
- N = number of subjet candidates, k runs over all constituents of jet J
- $\tau_N \rightarrow 0$: all radiation aligned with candidate subjets \rightarrow N or fewer subjets
- $\tau_N >> 0$: more than N subjets

Jet substructure: Energy correlation functions

1-point, 2-point and 3-point energy-correlation functions:

$$E_{CF1} = \sum_{i \in J} p_{T,i},$$

$$E_{CF2}(\beta) = \sum_{i < j \in J} p_{T,i} p_{T,j} (\Delta R_{ij})^{\beta},$$

$$E_{CF3}(\beta) = \sum_{i < j < k \in J} p_{T,i} p_{T,j} p_{T,k} (\Delta R_{ij} \Delta R_{ik} \Delta R_{jk})^{\beta}$$

- identification of a substructure of N particles (similar to τ_N)
- $E_{CF}(N+1) \rightarrow 0$ if there are N particles
- Dimensionless E_{CF} ratios: C₂, D₂

$$e_{2}^{(\beta)} = \frac{E_{CF2}(\beta)}{E_{CF1}(\beta)^{2}} \qquad C_{2}^{(\beta)} = \frac{e_{3}^{(\beta)}}{(e_{2}^{(\beta)})^{2}} \\ e_{3}^{(\beta)} = \frac{E_{CF3}(\beta)}{E_{CF1}(\beta)^{3}} \qquad D_{2}^{(\beta)} = \frac{e_{3}^{(\beta)}}{(e_{2}^{(\beta)})^{3}}$$

N-subjettiness discriminants

Optimal cut values chosen such that signal significance is maximized

Integrated luminosity = 3.2 fb⁻¹

ATLAS Work in progress	p _⊤ (W) > 250 GeV, events with Higgs jet candidate			
	N(signal)	N(bkg)	Z	
Without substructure cut	1.170	16.46	0.285	
Tau21 cut at 0.295	0.927	7.528	0.331	
Tau32 cut at 0.495	1.055	10.95	0.314	

Energy correlation variables

Comparison of substructure discriminants

In the region with high signal efficiency, the best discrimination comes from the C2 variable.

Comparison of substructure discriminants

Events with exactly 2 jets: almost no discrimination power

Main improvement from events with ≥ 3 jets

Summary and outlook

- An **optimization** of the analysis WH, $H \rightarrow bb$ has been shown.
- Jet substructure information can be used to increase the significance
 - \rightarrow Largest improvements for events with Higgs-jet candidates:

C2 (16.5 %), Tau21 (16.1 %)

→ Overall improvement for $p_T(W) > 250 \text{ GeV}$: **C2 (15.0 %), Tau21 (14.7 %)**

- Other substructure variables to be tested
- Eventually combining different substructure variables in a multivariate method

Backup slides

Event Selection

C0: All events (CxAOD)

C1: Pass trigger && trigger matching

Electron : HLT_e24_lhmedium_L1EM20VH (L1_EM18VH for MC) OR HLT_e60_lhmedium1 OR HLT_e120_lhloose

Muon : HLT_mu20_iloose_L1MU15 OR HLT_mu50

C2: N(VHLooseElectrons)+N(WHLooseMuons) = 1 && N(WHSignalElectrons)+N(WHSignalMuons) = 1

C3: MET > 30 GeV

```
C4: mT(W) > 20 GeV
```

```
C5: pT(W) > 120 GeV
```

```
C6: N(signal jets)+N(forward jets) \geq 2
```

```
C7: N(signal jets) \geq 2
```

```
C8: |\min\Delta\phi(MET,j1,j2,j3)| > 1 - j1,j2: leading signal jets, j3: 3rd leading signal jet or leading forward jet if 3rd signal jet does not exist
```

```
C9: pT(leading b-jet) > 45 GeV
```

```
C10: 95 < m(bb) [GeV] < 140 with after correction (use 2 leading b-jets if available)
```

C11: pT(W) < 500 GeV

Substructure variables

- N-subjettiness: Tau1, Tau2, Tau3, Tau1_wta, Tau2_wta, Tau3, Tau3_wta
- N-subjettiness ratios: Tau21, Tau32, Tau21_wta, Tau32_wta
- kT splitting scale: Split12, Split23, Split34
- Z-Cut: ZCut12, ZCut23, ZCut34
- Dipolarity: Dip12, Dip13, Dip23, DipExcl12
- Angularity, Sphericity, Apolarity
- kT Delta R: KtDR
- kT Mass drop: Mu12
- PlanarFlow
- Energy correlations: ECF1, ECF2, ECF3
- ECF ratios: C2, D2
- Thrust: ThrustMin, ThrustMaj
- FoxWolfram: FoxWolfram0, FoxWolfram1, FoxWolfram2, FoxWolfram3, FoxWolfram4
 [https://twiki.cern.ch/twiki/bin/view/AtlasProtected/JetSubstructureTools]