

Datenbasierte Untergrundabschätzung für die Suche nach top-Squarks im vollhadronischen Zerfallskanal mit dem ATLAS-Detektor

Nicolas Köhler

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

29. Februar 2016

 $\tilde{t} \rightarrow 0\ell$ Analyse

Bereits gesehen:

 ${ ilde t}
ightarrow t + { ilde \chi}_1^0$ (geboostet) Gluino-vermittelte Stops

- W+Jets-Kontrollregion (Philipp)
- QCD Untergrundabschätzung (Christian)
- Optimierung der Signalregion (Christian)

Standardmodell Untergrundbeiträge in geboosteter Signalregion (SR):

→ Standardmodell Z+Jets- und W+Jets- Produktion müssen verstanden sein

Jetzt: Die Rolle von $t\bar{t}$ -Produktion in der Z/W+Jets Abschätzung und für weniger geboostete Signalregionen

29.02.2016

Einführung
0000

W+Jets-Kontrollregion Aus Philipp's Vortrag

Z+Jets-Kontrollregion

Verwende 2 Lepton Selektion

 \rightarrow Für beiden Regionen gilt: Kein vernachlässigbarer $t\bar{t}$ -Beitrag

 $\tilde{t} \rightarrow 0\ell$ Analyse

Bisher wurde nur die geboostete SR betrachtet

- Mit zunehmender Datennahme erhöht sich die Sensitivität auch für andere Regionen des SUSY-Parameterraums
- Betrachte Signalregionen ähnlich derer von Run 1

$$m_{\tilde{t}} \sim m_t + m_{\tilde{\chi}_1^0}$$

Nicolas Köhler - $t\bar{t}$ -Untergrundabschätzung für $\tilde{t} \rightarrow 0\ell$ Analyse

Weichere Schnitte notwendig

Einführung	
0000	

 $\tilde{t}
ightarrow b + \tilde{\chi}_1^{\pm}$ Zerfälle:

- Deutlich weniger E^{miss}_T durch zusätzliches X[±]₁ in Zerfallskette
- W/Z+Jets Produktion durch b-Jet Schnitte unterdrückt
- ightarrow Signatur sehr ähnlich zu $tar{t}$ -Produktion

	SRB (boosted)	SRC1 (b $+$ $ ilde{\chi}_1^{\pm}$)
tī	4%	46%
Z+jets	51%	22%
W+jets	20%	11%
Others	25%	21%

 \rightarrow Untergrundabschätzgung von $t\bar{t}$ ist notwendig!

200

400

600

Nicolas Köhler - $t\bar{t}$ -Untergrundabschätzung für $\tilde{t} \rightarrow 0\ell$ Analyse

800 *E*^{miss}_T [GeV]

Angewendete Schnitte

Ergebnisse 000

Definition der $t\bar{t}$ -Kontrollregion

 $t\bar{t}$ trägt zur 0-Lepton SR bei, wenn tmittels $t \rightarrow b\ell \nu$ zerfällt, wobei ℓ nicht identifiziert wird

- Genau 1 Lepton mit $\rho_{\rm T} > 35 \,{
 m GeV}$
- Mindestens 4 Jets mit
 p_T > (80, 80, 20, 20) GeV
- Mindestens 2 *b*-Jets
- Masse des energiereichsten
 Fat-Jets > 70 GeV
- $E_{\mathrm{T}}^{\mathrm{miss}} > 150\,\mathrm{GeV}$
- 40 GeV < *m*_T(*E*^{miss}_T, *l*) <120 GeV

Angewendete Schnitte

Ergebnisse 000

Definition der $t\bar{t}$ -Kontrollregion

 $t\bar{t}$ trägt zur 0-Lepton SR bei, wenn tmittels $t \rightarrow b\ell \nu$ zerfällt, wobei ℓ nicht identifiziert wird

- Genau 1 Lepton mit $p_{\rm T} > 35 \,{\rm GeV}$
- Mindestens 4 Jets mit $p_{\rm T} > (80, 80, 20, 20)$ GeV
- Mindestens 2 *b*-Jets
- Masse des energiereichsten
 Fat-Jets > 70 GeV
- $\bullet \ {\it E}_{\rm T}^{\rm miss} > 150 \, {\rm GeV}$
- 40 GeV < *m*_T(*E*^{miss}_T, ℓ) <120 GeV

Angewendete Schnitte

Ergebnisse

Zusammenfassung

Definition der *t*t̄-Kontrollregion

 $t\bar{t}$ trägt zur 0-Lepton SR bei, wenn tmittels $t \rightarrow b\ell \nu$ zerfällt, wobei ℓ nicht identifiziert wird

- Genau 1 Lepton mit $p_{\rm T} > 35 \,{\rm GeV}$
- Mindestens 4 Jets mit $p_{\rm T} > (80, 80, 20, 20) \, {\rm GeV}$
- Mindestens 2 *b*-Jets
- Masse des energiereichsten
 Fat-Jets > 70 GeV
- $\bullet \ {\it E}_{\rm T}^{\rm miss} > 150 \, {\rm GeV}$
- 40 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 120 GeV

Angewendete Schnitte

Ergebnisse

Zusammenfassung

Definition der *t*t̄-Kontrollregion

 $t\bar{t}$ trägt zur 0-Lepton SR bei, wenn tmittels $t \rightarrow b\ell \nu$ zerfällt, wobei ℓ nicht identifiziert wird

ightarrow Verwende 1-Lepton-Region um $tar{t}$ mit Hilfe der Daten abzuschätzen

- Genau 1 Lepton mit $p_{\rm T} > 35 \,{\rm GeV}$
- Mindestens 4 Jets mit

 \mathbf{P}_T > (80, 80, 20, 20) GeV
- Mindestens 2 b-Jets
- Masse des energiereichsten
 Fat-Jets > 70 GeV
- $E_{\mathrm{T}}^{\mathrm{miss}} > 150\,\mathrm{GeV}$
- 40 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 120 GeV

Angewendete Schnitte

Ergebnisse 000 Zusammenfassung

Definition der *t*t̄-Kontrollregion

 $t\bar{t}$ trägt zur 0-Lepton SR bei, wenn tmittels $t \rightarrow b\ell \nu$ zerfällt, wobei ℓ nicht identifiziert wird

ightarrow Verwende 1-Lepton-Region um $t\bar{t}$ mit Hilfe der Daten abzuschätzen

- Genau 1 Lepton mit $p_{\rm T} > 35 \,{\rm GeV}$
- Mindestens 4 Jets mit
 *p*_T > (80, 80, 20, 20) GeV
- Mindestens 2 b-Jets
- Masse des energiereichsten Fat-Jets > 70 GeV
- $E_{\mathrm{T}}^{\mathrm{miss}} > 150 \,\mathrm{GeV}$
- 40 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 120 GeV

Angewendete Schnitte

Ergebnisse 000

Definition der $t\bar{t}$ -Kontrollregion

 $t\bar{t}$ trägt zur 0-Lepton SR bei, wenn tmittels $t \rightarrow b\ell \nu$ zerfällt, wobei ℓ nicht identifiziert wird

ightarrow Verwende 1-Lepton-Region um $tar{t}$ mit Hilfe der Daten abzuschätzen

- Genau 1 Lepton mit $p_{\rm T} > 35 \,{\rm GeV}$
- Mindestens 4 Jets mit $p_{\rm T} > (80, 80, 20, 20) \, {\rm GeV}$
- Mindestens 2 b-Jets
- Masse des energiereichsten Fat-Jets > 70 GeV
- $\bullet \ {\it E}_{\rm T}^{\rm miss} > 150 \, {\rm GeV}$
- 40 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 120 GeV

Einführung

Definition der $t\bar{t}$ -Kontrollregion

 $t\bar{t}$ trägt zur 0-Lepton SR bei, wenn tmittels $t \rightarrow b\ell \nu$ zerfällt, wobei ℓ nicht identifiziert wird

- Genau 1 Lepton mit $p_{\rm T} > 35 \,{\rm GeV}$
- Mindestens 4 Jets mit $p_{\rm T} > (80, 80, 20, 20) \, {\rm GeV}$
- Mindestens 2 b-Jets
- Masse des energiereichsten Fat-Jets > 70 GeV
- $\bullet \ {\it E}_{\rm T}^{\rm miss} > 150 \, {\rm GeV}$
- 40 GeV $< m_{\mathrm{T}}(\textit{E}_{\mathrm{T}}^{\mathrm{miss}},\ell) <$ 120 GeV

iinführung DOOO	Angewendete Schnitte O	Ergebnisse ●00	Zusammenfassung O	∆y≽it
Ereignisra Kontrollre $(m_{\tilde{t_1}}, m_{\chi_1^0}) = (8$ $t\bar{t}$ Single Top W+Jets Diboson $t\bar{t} + V$ Z+ lets	Ate in $t\bar{t}$ - ATLAS Work in progress Anzahl Ereignisse 500, 1) 0.29 (± 11.64% 888.00 (± 2.16% 48.14 (± 5.33%) 37.71 (± 7.71%) 5.88 (± 26.72%) 0.57 (± 53.62%)	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	brk in progress $\langle , 3.2 \text{ tb}^{-} \rightarrow \text{Data}$ Single Top W + jets Diboson t + V Z + jets $(m_{\chi}, m_{\chi}) = (800, 1)$ $m_{\chi} m_{\chi} = (800, 1)$ $m_{\chi} = (8$	0
Summe MC Daten Data/MC-Ü innerha gute Übereinstir Ver tt̄-Reinl	0.07 (± 0.0278 983.89 (± 1.99% 945.00 (± 3.25%) bereinstimmung Ib von 4%, nmung der Form der teilung, heit: >90%	$\begin{array}{c} 10^{5} \\ 10^{4} \\ 10^{3} \\ 10^{4} \\ 10^{3} \\ 10^{2$	Single Top W+jets Diboson t+V Z+jets (m _t , m _x)=(800,1) Z Z Diboson t+V Z Z Z Z W Z Z Z <	10
		0 50	100 150 200 250 30 m ^{t,min} [GeV]	0

29.02.2016

Nicolas Köhler - $t\bar{t}$ -Untergrundabschätzung für $\bar{t} \rightarrow 0\ell$ Analyse

7/10

Weitere Variablen

- $\bullet \ {\it E}_{\rm T}^{\rm miss} > 250 \, {\rm GeV}$
- $H_{\rm T} > 500 \,{\rm GeV}$
- $50 \, \text{GeV} < m_{\mathrm{T}}^{\mathrm{b,min}} < 150 \, \text{GeV}$

Data/MC-Übereinstimmung innerhalb von 6%, *tī*-Reinheit: 63% Signalbeitrag vernachlässigbar

Mit Schnitt auf Zahl der b-Jets

- ≥ 2 : $t\bar{t}$ -Reinheit: 80%
- \rightarrow Möglicherweise auch als ℓ_{-} Kontrollregion verwendba

 0ℓ -Kontrollregion verwendbar

Nicolas Köhler - $t\bar{t}$ -Untergrundabschätzung für $t \to 0\ell$ Analyse

Zusammenfassung & Ausblick

 $t\bar{t}\text{-}\mathsf{Untergrundabschätzung}$ für $\tilde{t}\to 0\ell$ Analyse vorgestellt

- Wichtig, um *tt*-Beitrag in *Z*+Jets- und *W*+Jets-Kontrollregion abzuschätzen
- Notwendig f
 ür nicht geboostete Signalregionen (bspw. $t \to b + \tilde{\chi}_1^{\pm}$)
- Data/MC-Übereinstimmung innerhalb von 4%
- tt-Reinheit über 90%
- \rightarrow Kontrollregion-Schnitte werden mit finalen SR-Definitionen optimiert
- ightarrow Geplante Veröffentlichung der $\tilde{t}
 ightarrow 0\ell$ Ergebnisse im Sommer 2016

Zusammenfassung & Ausblick

 $t\bar{t}\text{-}\mathsf{Untergrundabschätzung}$ für $\tilde{t}\to 0\ell$ Analyse vorgestellt

- Wichtig, um *tt*-Beitrag in *Z*+Jets- und *W*+Jets-Kontrollregion abzuschätzen
- Notwendig für nicht geboostete Signalregionen (bspw. $\tilde{t} \rightarrow b + \tilde{\chi}_1^{\pm}$)
- Data/MC-Übereinstimmung innerhalb von 4%
- tt-Reinheit über 90%
- ightarrow Kontrollregion-Schnitte werden mit finalen SR-Definitionen optimiert
- ightarrow Geplante Veröffentlichung der ${ ilde t}
 ightarrow 0\ell$ Ergebnisse im Sommer 2016

Vielen Dank für Ihre Aufmerksamkeit!