Entwicklung schneller Spurrekonstruktionsalgorithmen für den auf den ATLAS MDT-Kammern beruhenden Level-0-Myontrigger für HL-LHC

## Philipp Gadow Betreuer: Oliver Kortner

Max-Planck-Institut für Physik, München



Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

(日) (四) (日) (日) (日)

DPG-Frühjahrstagung Hamburg 2016

# Vom Large Hadron Collider zum High Luminosity-LHC



[1, CERN-LHCC-2015-020]

- Nominelle Luminosität nach Phase-2 Upgrade: 7 × 10<sup>34</sup> s<sup>-1</sup> cm<sup>-2</sup>
- Upgrades der Experimente f
  ür hohe Ratenf
  ähigkeit notwendig

- E - E

# Das ATLAS-Myonenspektrometer und Trigger



- Myonspektrometer:
  - ► schnelle Triggerkammern O(1 ns): RPC, TGC
  - Präzions-Spurdetektoren
     \$\mathcal{O}\$ (30 \mum): MDT
  - Phase-1/2 Upgrades: neue Detektoren und schnelle Ausleselektronik
  - Einbeziehen der Präzisions-Spurdetektoren in Triggerentscheidung

∃ ► < ∃</p>

DPG Hamburg 2016

A D b 4 A b

# Das ATLAS-Myonenspektrometer und Trigger



- Myonspektrometer:
  - ► schnelle Triggerkammern O(1 ns): RPC, TGC
  - Präzions-Spurdetektoren
     \$\mathcal{O}\$ (30 \mum): MDT
  - Phase-1/2 Upgrades: neue Detektoren und schnelle Ausleselektronik
  - Einbeziehen der Präzisions-Spurdetektoren in Triggerentscheidung

医下子 医

# Das ATLAS-Myonenspektrometer und Trigger



- Myonspektrometer:
  - ► schnelle Triggerkammern O(1 ns): RPC, TGC
  - Präzions-Spurdetektoren O(30 µm): MDT
  - Phase-1/2 Upgrades: neue Detektoren und schnelle Ausleselektronik
  - Einbeziehen der Präzisions-Spurdetektoren in Triggerentscheidung

→ Ξ → < Ξ</p>

# Der ATLAS Myonentrigger für den HL-LHC

## Zweistufiges Triggerschema

- Triggerstufe L0:
   6 10 µs Latenz, 1 MHz Rate
- High-Level-Trigger: volle Offline-Rekonstruktion
- Erste Triggerstufe
  - Kontinuierliche Auslese der Myondaten zur Triggerlogik (1 μs)
  - Koinzidenz der Treffer in den drei Triggerkammerschichten (1 μs)
  - MDT-Präzisionsmessung verfeinert Triggerkammer-Impulsmessung (1 μs)
  - 4. Finale Triggerentscheidung (3 µs)



DPG Hamburg 2016

4

# Spurfindungsalgorithmen auf Triggerebene

## Anforderungen an den Myonentrigger

- schnelle Rekonstruktion einer Myonenspur (Latenz: 3 µs)
- robust auch bei hoher Hintergrundstrahlung und Belegungsrate (Endkappe: 7% – 13%, Barrel: 1% – 7%)

## verfügbare Ressourcen

- schnelle Auslese der MDT-Kammern mit 12.5 ns Zeitauflösung
- Vorinformation der <u>RPC/TGC-Triggerkammern mit</u> ~0.015 bzw. 0.003 rad Genauigkeit

- A - E - N

#### K

# Histogramm-basierte Mustererkennung



 Triggerkammer-Spur mit Seed-Winkel α ± 0.003 rad Winkelgenauigkeit

## Histogramm-basierte Mustererkennung



- Triggerkammer-Spur mit Seed-Winkel α ± 0.003 rad Winkelgenauigkeit
- Rotation um α

## Histogramm-basierte Mustererkennung



- Triggerkammer-Spur mit Seed-Winkel α ± 0.003 rad Winkelgenauigkeit
- Rotation um α
- Mögliche Trefferpositionen:

$$d^{\pm} = x_i \cos \alpha + y_i \sin \alpha \pm r_{\text{Drift}}$$

## **Rekonstruktion mit Seed**



- Triggerkammer-Spur mit Seed-Winkel α ± 0.003 rad Winkelgenauigkeit (in dem strahlnächsten Endkappensektor)
- Rotation um  $\alpha$
- Mögliche Trefferpositionen:

 $d^{\pm} = x_i \cos \alpha + y_i \sin \alpha \pm r_{\text{Drift}}$ 

 Fülle Positionen in Histogramm mit Binbreite b

Spurrekonstruktionsalgorithmen für den ATLAS MDT-Level-0-Myontrigger DF

## **Rekonstruktion mit Seed**



- Triggerkammer-Spur mit Seed-Winkel α ± 0.003 rad Winkelgenauigkeit (in dem strahlnächsten Endkappensektor)
- Rotation um  $\alpha$
- Mögliche Trefferpositionen:

 $d^{\pm} = x_i \cos \alpha + y_i \sin \alpha \pm r_{\text{Drift}}$ 

- Fülle Positionen in Histogramm mit Binbreite b
- Geraden-Spurfit mit Treffern aus Bin mit meisten Einträgen

• 3 b

## MC-Studie

- Betrachte EML1 Kammer mit höchster Belegungsrate (n und  $\gamma$  Untergrund)
- Je 100 000 gerade Spuren mit zufällig generiertem Einfallswinkel vom IP  $(0.12 < |\alpha| < 0.24)$  und Position
- Variiere
  - Binbreite von 0 bis 7 mm,
  - Belegung: 0.0, 0.1, 0.2,
  - Winkelauflösung: 0.000, 0.003



∃ →

#### K

## Histogramm-basierte Mustererkennung optimale Binbreite

## max. Anzahl von Treffern



Anzahl der Treffer im maximalen Histogramm nimmt mit Binbreite zu

#### Kan

## Histogramm-basierte Mustererkennung optimale Binbreite

## Effizienz

Myonspur-Segment:

 $y = m \cdot x + b$ 

Definition Effizienz:

 $|m_{
m rec}-m_{
m gen}|<0.003$ 

Bei zu großen Binbreiten werden Geradensteigungen falsch rekonstruiert.



#### Kan

# Histogramm-basierte Mustererkennung optimale Binbreite

## Effizienz

Optimale Binbreite für maximale Effizienz bei endlicher Winkelauflösung: 2 mm



# Histogramm-basierte Mustererkennung

falsch rekonstruierte Spuren

## perfekte Winkelauflösung

## endliche Winkelauflösung



Bei höchstem Untergrund (Belegungsrate 20%) werden 4,5% Spuren mit falscher Steigung gefunden.

-

## Test mit Demonstrator-Hardware



- Mikroprozessor für schnelle Fließkommaoperationen
- Demonstrator-Hardware: Xilinx Evaluation Kit ZC806 (SoC Zynq-7045 mit 1 GHz ARM Cortex-A9)



[2, SN]
 Algorithmus in ARM
 Assembler programmiert
 (S. Nowak)

## Zusammenfassung und Ausblick

- Die Histogramm-basierte Mustererkennung ist eine auf eine Dimension projizierte Hough-Transformation.
- Mit gewählter Binbreite von 2 mm können auch bei dem doppelten Untergrund mit 0.95 Effizienz Spuren rekonstruiert werden.
- ► Auf einem SoC Zynq-7045 mit 1 GHz ARM Cortex-A9 läuft der Algorithmus in unter 3 µs.
- Weitere Möglichkeit: Verschiedene diskret verteilte Einfallswinkel als Startwert (gebinnte 2D Hough-Transformation) für höhere Effizienz

4 3 6 4 3

[ATLAS-PH2-SCOPING] The ATLAS Collaboration ATLAS Phase-II Upgrade Scoping Document CERN-LHCC-2015-020. LHCC-G-166

[SN] Sebastian Nowak private Kommunikation

14