GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Comparison of FullSim and ATLFAST-II for Release 14

Giorgio Cortiana

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Fast sim mc08.105200.T1_McAtNIo_Jimmy.recon.AOD.e357_a68

- Full sim (with HEC quadrant disabled) mc08.105200.T1_McAtNlo_Jimmy.recon.AOD.e357_s462_r541
- Full sim (with HEC quadrant enabled) mc08.105200.T1_McAtNlo_Jimmy.recon.AOD.e357_s462_r579
 - Used ~150k events from each datasets, corresponding to ~600pb⁻¹ @ 10 TeV

average jet pt vs eta, phi (HEC Q off)

Comparison of full (HEC Q off) and fast simulation:

Large discrepancies due to missing HEC quadrant observed in ECC
 There is also an additional piece of the HEC off in ECA (FEB off)

In the plots: difference of the average jet P_{τ} in full and fast sim, in the eta-phi plane

average jet pt vs eta, phi (HEC Q on)

Comparison of full and fast simulation with the complete detector

No clear structure visible in the eta-phi plane! THIS IS GOOD!

The discrepancies of the mean P_T vs eta-phi are within their uncertainty. No systematic shift is observed in any particular region

average jet pt vs eta, phi (HEC Q on)

selection efficiencies

Δε	all	e+jets*	μ +jets	τ +jets *	dilep*
HEC Q off	-5.1 ± 0.6	-6.7 ± 1.2	-3.1 ± 0.9	-6.7 ± 3.2	-6.6 ± 2.2
HEC Q on	-3.2 ± 0.6	-4.8 ± 1.2	-1.8 ± 0.9	-7.0 ± 3.2	-2.3 ± 2.2

where $\Delta \varepsilon = (\varepsilon^{\text{Full}} - \varepsilon^{\text{Fast}})/\varepsilon^{\text{Full}}$

*AOD→AOD corrections for e/tau are not applied yet in fast sim

top and W mass HEC Q on

W and top mass shapes seem reasonable. We can use the shapes of the Fast sim and then calculate systematic uncertainties with respect to the Full simulation in the template method.

hand-made jet collections (skimming)

- In the AOD Cone4TowerH1 jets are present (were used in comparison shown in previous slides)
- During skimming we run new jet algorithms .
 Kt4LCTopo
 Cone4LCTopo
 Fast jet etc..

Are jet distributions between fast and full simulation ok after jet remaking?

hand-made jet collections (skimming)

Comparison of Cone4H1Tower jets (in AODs) and Cone4LCTopo jets (hand-made from AODs) quantities between fast and full simulation:

Fast and Full simulation (not due to calibrations themselves, see following slide)

9

hand-made jet collections (skimming)

Different calibration LC or H1 do not contribute to the difference

conclusions

- Atlfast-II shows better agreement w.r.t. full simulation with HEC quadrant back on
- Altfast-II still reconstructs more jets at low P_T with respect to the full simulation (especially in the region 20-40 GeV)
- Discrepancies in event selections are at the level of 3% considering full sim with the complete detector
- In general top/W mass shapes are in good agreement between full and fast sim
- The analysis suggests that no large bias/syst due to the use of Atlfast-II is expected in top mass measurements when using jet collection in the AODs (will further check this in the future). This needs to be confirmed for more than one mass point.

conclusions - 2

- When re-making jets during skimming, the agreement between AtlfastII and Full simulation is largely reduced
- Preliminary investigations appear to indicate a problem in the clusters (see Andreas' checks)

We will need to further understand this before relying on AtlfastII jets collections in skimmed samples

- backup slides -

average jet pt vs eta, phi (HEC Q off)

selection efficiencies/evt flow

top and W mass

uncertainty on jet P_T average vs eta, phi

average jet pt error vs eta, phi (HEC Q off)

average jet pt error vs eta, phi (HEC Q on)

