

Messung des Wirkungsquerschnitts der Top-Quark Paarproduktion mit dem

ATLAS Experiment

Patrick Rieck

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

TUM Seminar -Physik am LHC 30. Januar 2016

Physik am LHC - Ziele

- Motivation des LHC durch zwei Ziele
 - 1. Suche nach dem Higgs-Boson ✓
 - Suche nach Phänomenen jenseits des Standardmodells der Elementarteilchenphysik ?
- Mögliche Gründe für das Ausbleiben weiterer Entdeckungen
 - Begrenzte Reicheweite des LHC $\Lambda_{BSM} \gg 1 \text{ TeV}$
 - Signatur übersehen
 - Kleine Rate neuer Phänomene

Bedeutung des Top-Quarks

- Schwerstes bekanntes Elementarteilchen, m_t = 173 GeV
- ▶ Zerfall $t \to Wb$ ($\mathcal{BR} \approx 100\%$), weiterhin $W \to qq'$ oder $W \to \ell \nu$ ⇒ reichhaltige Phänomenologie, Untergrund für Prozesse jenseits des SM

	1	п	Ш	
Masse- Ladung- Spin-		1,27 GeV 3/3 C 3/2 C	171,2 GeV 3/3 1/2	° γ
Name	up	charm	top	Photon
Quarks	4,8 MeV -1/3 d 1/2 d down	104 MeV -1/3 S 1/2 S strange	4,2 GeV -3/3 b 1/2 b bottom	0 0 1 Gluon
	<2,2 eV 0 Ve 1/2 Ve Elektron- Neutrino	<0,17 MeV 0 V _μ Myon- Neutrino	<15,5 MeV 0 V _T Tau- Neutrino	91,2 GeV O 0 Z 1 Schwachet
Leptonen	0,511 MeV -1 C 1/2 C Elektron	105,7 MeV -1 1/2 H Myon	1,777 GeV -1 1/2 T Tau	schwache SOR

- Grosser Phasenraum für den Zerfall, Γ_t ~ G_Fm_t³
 ⇒ Zerfall vor Hadronisierung
- ► Higgs-Fermion Kopplung: $\mathcal{L}_{Yukawa} = \frac{m_t}{v/\sqrt{2}} \bar{\psi}_t \psi_f h \Rightarrow \frac{m_t}{v/\sqrt{2}} \approx 1$!

Bedeutung des Top-Quarks

- Schwerstes bekanntes Elementarteilchen, m_t = 173 GeV
- Zerfall t → Wb (BR ≈ 100%), weiterhin W → qq' oder W → ℓν ⇒ reichhaltige Phänomenologie, Untergrund für Prozesse jenseits des SM

- Grosser Phasenraum für den Zerfall, Γ_t ~ G_Fm_t³
 ⇒ Zerfall vor Hadronisierung
- ► Higgs-Fermion Kopplung: $\mathcal{L}_{Yukawa} = \frac{m_t}{v/\sqrt{2}} \bar{\psi}_t \psi_f h \Rightarrow \frac{m_t}{v/\sqrt{2}} \approx 1$!

Gliederung

- ► Top-Quark Paarproduktion
- Simulation von hadronischen Kollisionen
- ► Experimentelle Techniken
- Wirkungsquerschnittsmessung

Top-Quark Paarproduktion

Top-Quark Zerfall

- Schwacher lospin-partner des b-Quarks
- SM: t → Wtq
 ⇒ hadronische and leptonische
 Endzustände, abhängig vom W boson
 Zerfall
- ► Flavour Physik und Unitarität der CKM-Matrix $\Rightarrow |V_{tb}| \approx 1$

Hadronische Kollisionen

- Faktorisierung hadronischer (soft) und partonischer Wechselwirkungen (hart)
 - ► Soft: PDFs f_i aus eigenständigen Messungen

Top-Quark Paarproduktion

- Starke Wechselwirkung dominanter Produktionsmodus
- ► LHC (pp-Kollisionen): hohe Gluon-Beiträge ⇒ hoher Wirkungsquerschnitt auch ohne Antiproton-Strahl

▶ Verschiedene Zerfallskanäle – $N_{\ell^{\pm}} \in \{0, 1, 2\}$

Apr. Ag > ± £

Faktorisierungsansatz

 Harter Streuprozess: Monte Carlo Integration des voll differentiellen, partonischen WQs

$$\sigma = \int \mathrm{d}x_1 \mathrm{d}x_2 \sum_{i,j} \mathrm{d}\Phi f_i(x_1) f_j(x_2) \frac{1}{2x_1 x_2 s} |\mathcal{M}|^2$$

 Parton Shower: Splitting von Partonen zwischen Energieskalen Q und Q₀

$$d\sigma_{0+k} \approx \sigma_0 \cdot \sum_{\{\text{partons } i\}} \frac{\alpha_S}{2\pi} \frac{d\vartheta^2}{\vartheta^2} dz d\varphi P_{ki}(z,\varphi)$$

- Underlying event: Multiple Parton Interactions
- Teilchenzerfälle
- QED Bremsstrahlung
- Zusätzliche pp-Kollisionen (soft)
- Detektorsimulation

Vergleiche mit Messdaten

- Hohe Komplexität der Ereignissimulation - notwendig zur Beschreibung der Messdatan
- State of the art: NLO Generatoren, harter Streuprozess mit virtuellen und reellen QCD-Korrekturen
 - Notwendig um mit experimenteller Präzision mitzuhalten

Multiplizität geladener Teilchen

Vergleiche mit Messdaten

- Hohe Komplexität der Ereignissimulation - notwendig zur Beschreibung der Messdatan
- State of the art: NLO Generatoren, harter Streuprozess mit virtuellen und reellen QCD-Korrekturen
 - Notwendig um mit experimenteller Präzision mitzuhalten

Normalised fiducial differential $t\bar{t}$ cross-section

Experimentelle Techniken *tī* Signaturen

- ► Drei Kanäle der tt Produktion
 - Voll-hadronisch
 - Semi-leptonisch
 - Di-leptonisch
- Verschiedene Untergründe
 - Multijet Produktion
 - ► W+jets, Z+jets
 - Single Top-Quark Produktion
 - Bevorzugung des Di-lepton Kanals
 - Geringer Untergrund (insbesondere im eμ-Kanal)
 - Hohe Präzision
 - ► Hohe Ereignisraten trotz geringen \mathcal{BR} dank hoher Luminosität
 - ▶ Signatur: e, μ , (E_T^{miss}), zwei b-jets

Single Lepton Trigger

Trigger gemäss einem der gesuchten Objekte

- b-jets: Untergrund hoch
 - $\Rightarrow p_T$ -Schwelle hoch
 - ⇒ Rate geringe
- ► E_T^{miss}: gleiches Problem
- ▶ e OR mu: Untergrund W+jets moderat
 - \Rightarrow Relativ niedrige Triggerschwellen von ca. $p_T=25\,\text{GeV}$
 - \Rightarrow Relativ hohe Triggerrate für $e\mu$ $t\bar{t}$ Ereignisse

Elektron und Myonrekonstruktion

- Eingeschraenkter Akzeptanz-Bereich
 - ► Hoher Transversalimpuls
 - Richtung innerhalb des inneren Spurdetektors
- Primärvertex als Ursprung
- Isolation, kein Überlapp mit Jets
- Korrektur der Rekonstruktionseffizienzen in Simulationen
- ▶ Kalibrationen basierend auf $Z \rightarrow \ell\ell$ Ereignissen

Elektron-spezifisch

Myon-spezifisch

- Kalorimeterenergie, E_T > 25 GeV,
 Kalorimeter-Isolation
- Transversalimpulses p_T > 25 GeV, zwei unabhängige Messungen (innerer Detektor vs. Myonspektrometer)

Jetrekonstruktion und b-tagging

- ► Cluster aus Kalorimeterzellen, Anti- k_T -Algorithmus (D = 0.4), $p_T > 25 \,\text{GeV}$
- ▶ Absolute Energiekalibration basierend of $Z \rightarrow \ell\ell$ +jet und γ +jet Ereignissen
- Bezug der Energiekalibration auf Hadron-Level jets mit Hilfe von Simulationen
- Besonderheit von jets mit B-Hadronen: b-tagging
- Hohe Lebensdauer von B-Hadronen
 ⇒ Sekundärvertices bzw. hohe Impact Parameter von

Spuren

 Limitierung auf Akzeptanz des inneren Spurdetektors

Wirkungsquerschnittsmessung

Wirkungsquerschnittsmessung

- ▶ pp-Kollisionsdaten 2015, $L = 3.2 \text{fb}^{-1}$, $\sqrt{s} = 13 \text{ TeV}$
- Ereignisselektion: genau ein Elektron und ein Myon, entgegengesetzte Ladung, geometrischer Abstand
- Zählen der Anzahl der b-jets

$$\begin{array}{lcl} N_1 & = & L\sigma_{t\bar{t}} 2\varepsilon_{e\mu}\varepsilon_b (1-C_b\varepsilon_b) + N_1^{\text{bkg}} \\ N_2 & = & L\sigma_{t\bar{t}}C_b\varepsilon_b^2 + N_2^{\text{bkg}} \end{array}$$

- N_{1,2}^{bkg} aus Simulationen bzw. Daten-basiert (Lepton Fakes anhand von Same-Sign Ereignissen abgeschätzt)
- $C_b = \varepsilon_{bb}/\varepsilon_b^2 = 1.002$ (Simulation)
- $\varepsilon_{e\mu} = 0.83\%$ (Simulation)
- ▶ Messung von N_1 und $N_2 \Rightarrow \varepsilon_b$ und $\sigma_{t\bar{t}}$

Wirkungsquerschnittsmessung b-Jet Multiplizitäten

- ► Hier: Normierung verschiedener tt Simulationen auf den theoretischen Wirkungsquerschnitt (NNLO+NNLL)
- Gute Beschreibung von N₁ und N₂
- Schwierigkeit der Modellierung von N₀ (WW, Z+jets) und N₃₊ (tt + Heavy Flavour) - keine Relevanz für die Messung

Wirkungsquerschnittsmessung Systematische Unsicherheiten

- Für jede systematische Unsicherheit: Wiederholung der Bestimmung von $\sigma_{t\bar{t}}$ mit entsprechender Veränderung aller eingehenden Parameter
- Quadratische Summation aller resultierenden Variationen von $\sigma_{t\bar{t}}$
- Wichtigste Beiträge:
 - Integrierte Luminosität
 - $m{t}$ t Modellierung, insbesondere Parton Shower und Hadronisierung

Totaler Wirkungsquerschnitt:

$$\sigma_{t\bar{t}} = 818 \pm 8(\text{stat}) \pm 27(\text{syst}) \pm 19(\text{lumi}) \pm 12(\text{beam}) \, \text{pb}$$

Vergleich mit der Theorie (NNLO+NNLL):

$$\sigma_{t\bar{t}} = 832^{+40}_{-46} \, \mathrm{pb}$$

Fiducial cross-section: Bezug auf Akzeptanz $\varepsilon_{e\mu}=A_{e\mu}G_{e\mu}$ ($e\mu,\,p_{\rm T}^\ell=25\,{\rm GeV},\,|\eta^\ell|<2.5$), keine Extrapolation auf den vollen Phasenraum \Rightarrow geringere Modellierungsunsicherheiten

$$\begin{array}{lcl} \sigma_{t\bar{t}}^{\text{fid}} &=& A_{\text{e}\mu}\sigma_{t\bar{t}} = (\varepsilon_{\text{e}\mu}\sigma_{t\bar{t}})/G_{\text{e}\mu} \\ &=& 11.32 \pm 0.10(\text{stat}) \pm 0.29(\text{syst}) \pm 0.26(\text{lumi}) \pm 0.17(\text{beam})\,\text{pb} \end{array}$$

Wirkungsquerschnittsmessung Übersicht

Zusammenfassung

- Top-Quark Paarproduktion als Test des SM / bedeutender Untergrund für zahlreiche Suchen nach neuen Phänomenen
- Wirkungsquerschnittsmessung = Zusammenspiel von Theorie und Experiment
- ▶ Hohe Przision der Messung von $\sigma_{t\bar{t}}$, begrenzt durch Modellierung (Theorie), Luminosität und Strahlenergiegenauigkeit (LHC)