H→WW→lvlv at high luminosity: progress report

- 1. Analysis step-by-step: how it is performed
- 2. Distributions for leptons, jets, MET etc for test samples
- 3. Our study and seven options of degraded FCal
- 4. Plans

A.A. Gavrilyuk, T. Maier (LMU Munich), I.I. Tsukerman (thanks to K. Koeneke from HWW group) ITEP Moscow, Russia sFCal analysis workshop, Munich, 14.04.16

Analysis step-by-step - 1

Input: VBF H \rightarrow WW \rightarrow IvIv xAODs (different m_H, μ and geometries) Most of datasets were ready only to 8.04; the last one finished on 11.04

• Creation of DxAODs from xAODs

```
\rightarrow T. Maier (and A.G.)
```

- Use HIGG3D1 derivation for this purpose as we did in HWW group for Run2
- Factor of ten reduction w.r.t. initial xAOD; its size strongly depends on $\boldsymbol{\mu}$
- "TopoClusters" can be easily added w/o sizeable increase of DxAOD
- T. Maier provided Sasha with correct script to produce DxAODs
- DxAODs might be helpful for all the sFCal analysis community

all new DxAODs are produced this week for m_H=125 GeV,1000 GeV Older test DxAODs were produced from "bad noise" xAODs. To be decided at what moment to add TopoClusters (and "AODfixes") to DxAOD

- DxAOD vs xAOD validation for jets and MET
 - jet-by-jet comparison xAOD vs DxAOD for subsample of events by Ilya: OK
 - comparison of jet kinematics for larger sample of events by Tom: OK
 - MET validation is in progress, situation is not clear for us

Analysis step-by-step - 2

• Creation of PxAODs from DxAODs

\rightarrow T. Maier

- PxAODs are input files for the HWW analysis framework
- They contain "HWWobjects" after initial (but rather hard) HWW selections
- Test PxAODs exist for a few "bad noise" samples with Run2 jet calibrations
- HL-LHC related complete calibrations not yet ready; in progress
- Use jets as they are (directly from collection) is probably option for today
- Later come to official calibrations

IMPORTANT. Clear prescriptions how to integrate calibrations (both for jets and MET) into DxAOD \rightarrow PxAOD soft/scripts are really needed!

Test PxAODs are produced for m_H =1000 GeV for all μ with FCal geometry and for μ =200 for sFCal-s geometry, but for "bad noise" samples

Suggestion: to produce PxAODs with jets (without extra calibrations) from very recent r76*-r77* DxAODs prepared by Sasha

Analysis step-by-step - 3

• Simple analysis of PxAODs with RootCore (tqroot) \rightarrow I.T.

- Creation of basic histograms using ROOT "project" method for CollectionTree
- Plotting these histograms "by hand" from the histogram files
- A few minutes at typical SLC6 machine is sufficient to analyze 100K events

• Complete analysis of PxAODs within the HWW framework \rightarrow A.G.

- Creation of file with PxAOD descriptions \rightarrow done for mentioned PxAODs
- Running HWW analysis to create framework-readable compact file
- Cutflows and plots after each standard HWW selection step from this file
- A few minutes at SLC6 machine is sufficient to analyze 1M events
- Details in A.G. talk today

Run 2 and HL-LHC settings for different objects

- Any trigger is off as we don't know what will be at HL-LHC We had of course dedicated trigger in Run 2 studies
- TRT was excluded from muon/electron definition Exclusion is performed at the PxAOD creation level Reason: no TRT at HL-LHC is expected. Note. Cut on lepton p_T is as in Run 2, i.e. p_T(*I*)>22 (15) GeV
- Jets + MET: still used Run 2 definitions/configs for all of this.
 - AntiKt4EMTopoJets, to be changed to AntiKt4LCTopoJets Steve is actively working on HL-LHC JES, to be expected soon.
 - 25 (30) GeV for jet p_T in $|\eta| < 2.4$ ($|\eta| > 2.4$): selection events for PxAOD For future: 40 (50) GeV as a minimum requirement to be applied later?
 - JVT cut of 0.64 is used in Run 2 for jets with p_T <50 GeV in $|\eta|$ <2.4 Not clear what value should be used for HL-LHC studies...
 - Standard MET is used, what MET should we try instead? MET recommendations for HL-LHC are in preparation, discussions are continued

Study for scoping document presented yesterday is a good base

Kinematic variables to study

- Lepton characteristics which are used in HWW studies $p_T(I1)$, $p_T(I2)$, M(II), $p_T(II)$, $\Delta \eta(II)$, $\Delta \phi(II)$; also $\eta(I1)$, $\eta(I2)$
- Jet characteristics which are used in HWW studies
 p_T(*j1*), p_T(*j2*), p_T(*j3*), η(*j1*), η(*j2*), η(*j3*), M(*jj*), ΔY(*jj*), Δφ(*jj*)
- MET and related quantities

MET itself, $\Delta \phi$ (MET, *II*), p_T(tot) and transverse mass M_T

A few comments about Run 2 and HL-LHC comparisons:

- Plots are normalized to have the same integral
- HL-LHC files: different μ, normal FCal geometry, m_H =1000 GeV (as Run 2); in addition sFCal-s geometry for the highest μ
- We consider separately eµ + µe (DF), µµ and ee (SF) lepton final states (DF is main final state and Run2 cuts are defined)
- 50K events in initial Run 2 xAOD and 100K in HL-LHC xAODs

Note: in "new" r7699-r77* xAODs we have only 20K events per sample

Our studies and seven degraded FCal options

• sFCal (large gap) option can be ignored?

Not in the list https://indico.mpp.mpg.de/getFile.py/access?sessionId=0&resId=0&materialId=6&confId=4206

- dead FCal options 4, 5, 7 are partially considered earlier by us https://cds.cern.ch/record/2109008/files/HWWIvIvUpgrade2015new.pdf
 - Reduced VBF H signal acceptance by roughly 10% (40%, 70%) respectively
 - That studies were based on Run2 VBF H samples, i.e. moderate pile-up.
 - options 1 to 7 (priority: 2, 3 and 6) to be tested with HL-LHC samples provided dedicated calibrations with clear prescriptions will be available
 - Note. In Run2 analysis we are using both normal MET (but with track-based soft term) and fully track-based MET.

Examples of plots/tables based on tqroot analysis

- Fractions of $\mu\mu$, $e\mu$, μe , and ee events passed PxAOD selections
- Jet multiplicities vs μ (all μ for FCal and μ =200 for sFCal-s)
- Lepton, jets and MET-related kinematics at different μ including Run2 For different flavours (DF), i.e. (eµ + µe) events only; ee+µµ in backup
- Jet and MET-related kinematics at μ=200 for FCal and sFCal-s For different flavours (DF), i.e. (eµ + µe) events only

Results for $m_H = 1000$ GeV: selection efficiency

Tab						
		No derivation				
	Final state	N(Run2)/ N(xAOD)	N(μ=80)/ N(xAOD)	N(μ=140)/ N(xAOD)	N(μ=200)/ N(xAOD)	N(μ=200)/ N(xAOD)
	θμ	0.685	0.677	0.673	0.664	0.657
	μθ	0.681	0.645	0.627	0.613	0.608
	μμ	0.682	0.699	0.691	0.684	0.677
	ee	0.659	0.625	0.613	0.600	0.593

Reasonable muon and electron reconstruction efficiency even for $\mu = 200$ A bit better efficiency provided derivation step is performed Some difference e μ vs μ e are due to smaller efficiency to low-p_T e?

Results for $m_H = 1000 \text{ GeV}$: jet multiplicity

	Table shows fractions of events after PxAOD selections								
_		Run 2		HL-LHC for µ=200					
Final state	N(>0 jet)	N(>1 jet)	N(>2 jet)	N(>0 jet)	N(>1 jet)	N(>2 jet)			
eμ	0.900	0.534	0.143	1.000	0.999	0.998			
μe	0.895	0.541	0.142	1.000	0.999	0.997			
μμ	0.901	0.537	0.144	1.000	0.999	0.997			
ee	0.902	0.543	0.150	1.000	0.999	0.998			

Too high jet multiplicity for μ =200, cuts on jet p_T should be more tight No difference between ee, eµ and µµ cases

Results for $m_H = 1000 \text{ GeV}$: jet multiplicity

	Table shows fractions of events after PxAOD selections							
_	H	LHC for μ=8	30	HL-LHC for µ=140				
Final state	N(>0 jet)	N(>1 jet)	N(>2 jet)	N(>0 jet)	N(>1 jet)	N(>2 jet)		
eμ	0.986	0.921	0.780	0.999	0.996	0.987		
μe	0.985	0.910	0.770	1.000	0.997	0.987		
μμ	0.984	0.914	0.769	1.000	0.997	0.988		
ee	0.985	0.910	0.766	0.999	0.996	0.987		

Strong increase of jet multiplicity with μ step-by-step No difference between ee, $e\mu$ and $\mu\mu$ cases

Lepton kinematics in $H \rightarrow WW \rightarrow IvIv$ events: DF-case

No sizeable differences between spectra at 2015 year and high μ conditions

Much harder jet p_T at higher luminosity, especially for μ =200 Much more forward jets at high μ , increasing with μ <u>"bunny ears" at EC/FCal_boundary appear at μ =140, their increase at μ =200</u>

Jet kinematics in H→WW→IvIv events: DF-case

Much harder third jet p_T at high lumi, "bunny ears" at EC/FCal boundary More events with low and high ΔY and M(jj) especially at μ =200

Kinematics in $H \rightarrow WW \rightarrow IvIv$ events: DF-case

No sizeable differences between spectra for leptons and $\Delta\phi(jj)$ More events with low and high M(jj) at μ =200

MET and MT in $H \rightarrow WW \rightarrow IvIv$ events: DF-case

FCal geometry

Much harder MET, p_T (tot) and harder MT-spectra at higher μ Smaller azimuthal angle between MET and leptons at higher μ

Jet kinematics in $H \rightarrow WW \rightarrow IvIv$ events: DF-case

More forward jets in the sFCal case Jet p_T spectra are changed in the region around 50 GeV for sFCal case <u>"bunny ears" at η =3.3 are similar for FCal and sFCal cases</u>

Jet kinematics in H→WW→IvIv events: DF-case

Harder third jet p_T for the sFCal w.r.t. FCal case For Y(jj) and M(jj) spectra differences between geometries are not big

A bit larger MET in the case of sFCal geometry Other spectra look similar except p_T(tot) at small values

Conclusion/observations

First comparison of kinematics in Run 2 and high μ MC samples for VBF H \rightarrow WW \rightarrow IvIv at m_H =1000 GeV is performed

xAOD→DxAOD (HIGG3D1)→PxAOD steps look successful; the derivation step brings us O(1%) more events with high- p_T di-leptons

- Lepton kinematics look very similar despite 13 vs 14 TeV energy Some exception: slight difference in some distributions in the ee-only case
- MET and related quantities kinematics look very different at high μ
 - MET itself and $p_T(tot)$ spectra are much harder due to huge pile-up
 - Transverse mass M_{T} is also higher due to bigger MET
 - MET from sFCal is a bit higher than from FCal
- Jet kinematics has very significant change at high μ

Average jet p_T strongly increases due to huge pile-up in forward region For the same reason big maxima in jet η -spectra at $|\eta|=3.3$ More jets in sFCal than in FCal, harder p_T -spectra

Jet and MET should be properly calibrated

Short-term plans

- Finishing to create DxAODs for r7699-r77* (all geometries, all μ , m_H =125 GeV and 1000 GeV)
- Production of PxAODs from them w/o jet calibrations and with AODfix(?)
- New round of DxAODs (with TopoClusters added), better to do from corrected xAODs (recreated or rereconstructed from clusters)
- Analysis of these PxAODs with RootCore and HWW framework
- Next steps will depend on situation with jet/MET calibrations...

Backup slides

Jet kinematics in H \rightarrow WW \rightarrow IvIv events: $\mu\mu$ -case

Much harder jet p_T at high luminosity, especially for second jet Much more forward jets at high μ , "bunny ears" at EC/FCal_boundary

Jet kinematics in $H \rightarrow WW \rightarrow IvIv$ events: ee-case

Much harder jet p_T at high luminosity, especially for second jet Much more forward jets at higher μ, "bunny ears" at EC/FCal boundary

Lepton kinematics in H \rightarrow WW \rightarrow IvIv events: $\mu\mu$ -case

No sizeable differences between spectra at 2015 year and high μ conditions

Lepton kinematics in $H \rightarrow WW \rightarrow IvIv$ events: ee-case

No big differences between spectra at 2015 year and high μ conditions However slightly harder M(II) and p_T(I2)-distributions