$H \rightarrow WW \rightarrow IvIv$ at high luminosity: results with AntiKt4LCTopoJets

- Jet rates at different geometries, μ and m_H Geometries: FCal, sFCal small gaps; μ =80-200, m_H = 125 and 1000 GeV
- Jet kinematics at different geometries, μ and m_{H}
- Conclusion
- Plans

A.A. Gavrilyuk, T. Maier (LMU Munich), I.I. Tsukerman (thanks to K. Koeneke from HWW group) ITEP Moscow, Russia

update of slides shown at sFCal analysis workshop, Munich, 14.04.16

Examples of plots/tables based on tqroot analysis

- Jet multiplicities
- Jets: first, second and third jet p_T and η , $\Delta Y(jj)$, M(jj) for tagging jets Run2, μ =80, 140 and 200 for FCal and sFCal geometries separately FCal vs sFCal for different μ and m_H

Plots are given both in logarithmic and linear scales Plots are normalized to have the same integral

- Jet and MET-related kinematics at μ=200 for FCal and sFCal-s For different flavours (DF), i.e. (eµ + µe) events only
- Jet and MET-related kinematics at μ =80/140 for FCal and sFCal-s See backup slides

Results for $m_H = 125$ GeV: jet multiplicity

Table shows fractions of events after PxAOD selections, $e\mu + \mu e$

	FCal			sFCal		
μ m _H GeV	N(>0 jet)	N(>1 jet)	N(>2 jet)	N(>0 jet)	N(>1 jet)	N(>2 jet)
80 125	0.903	0.575	0.195	0.931	0.598	0.206
140 125	0.951	0.727	0.413	0.965	0.786	0.484
200 125	0.987	0.917	0.762	0.993	0.956	0.867
R2 125	0.952	0.647	0.176	-	-	-

Run2 and μ =80 cases not very different Strong increase of jet multiplicity with μ , jet p_T cuts should be tightened Slightly more jets in sFCal w.r.t. FCal

Results for $m_H = 1000 \text{ GeV}$: jet multiplicity

Table shows fractions of events after PxAOD selections, $e\mu + \mu e$

	FCal			sFCal		
μ m _H GeV	N(>0 jet)	N(>1 jet)	N(>2 jet)	N(>0 jet)	N(>1 jet)	N(>2 jet)
80 1000	0.856	0.463	0.139	0.874	0.507	0.158
1401000	0.922	0.658	0.365	0.942	0.729	0.447
2001000	0.976	0.884	0.728	0.990	0.938	0.842
R2 1000	0.898	0.537	0.143	-	-	-

Run2 and μ =80 cases not very different Strong increase of jet multiplicity with μ , jet p_T cuts should be tightened We have slightly more jets in sFCal w.r.t. non-degraded FCal

Jet plots as function of μ , $m_H = 125 \text{ GeV}$

Typical maxima at high η are more pronounced for second jets A bit harder jet p_T at higher luminosity, especially for μ =200 A bit more second forward jets at high μ , increasing with μ

Some right shift in p_T -spectra at high luminosity, especially for μ =200 Statistic is not enough to make definite conclusions about forward region

7

Harder third jet p_T at high luminosity, more forward jets at high μ More events with low ΔY and M(jj) especially at μ =200

FCal geometry, 125 GeV VBF H, different μ , lin scale

"Bunny ears" are probably seen at EC boundary at high μ Not enough statistics for third jets to come to definite conclusions

sFCal geometry, 125 GeV VBF H, different µ, log scales

Typical maxima at high $|\eta|$ are more pronounced for second jets A bit harder jet p_T at higher luminosity, especially for μ =200 A bit more second forward jets at high μ , increasing with μ

Some right shift in p_T -spectra at high luminosity, especially for μ =200 Statistic is not enough to make definite conclusions about forward region

sFCal geometry, 125 GeV VBF H, different μ, log scale

Harder third jet p_T at high luminosity, more forward jet at high μ More events with low ΔY and M(jj) especially at μ =200

sFCal geometry, 125 GeV VBF H, different μ , lin scale

"Bunny ears" are probably seen at EC boundary at high μ Not enough statistics for third jets

Jet plots as function of μ , m_H =1000 GeV

Typical maxima at high η_{η}^{\dagger} are pronounced both for leading and second jets A bit harder jet p_{T} at higher luminosity, especially for μ =200

Jet kinematics in H→WW→IvIv events: DF-case

Some right shift in p_T -spectra at high luminosity, especially for μ =200 Statistic is not enough to make definite conclusions about forward region

FCal geometry, 1000 GeV VBF H, different µ, log scale

Harder third jet p_T at high luminosity, more forward jets at high μ More events with low ΔY and M(jj) especially at μ =200

FCal geometry, 1000 GeV VBF H, different μ , lin scale

"Bunny ears" are probably seen at EC boundary at high μ Not enough statistics for third jets

A bit harder jet p_T at higher luminosity, especially for μ =200 No big increase of forward jets at high μ

Jet kinematics in H→WW→IvIv events: DF-case

Some right shift in p_T -spectra at high luminosity, especially for μ =200 Better to increase statistic to make definite conclusions about FW region

Harder third jet p_T at high lumi, more forward jets at high μ More events with low ΔY and M(jj) especially at μ =200

"Bunny ears" are probably seen at large η and at high μ ? Not enough statistics for third jets in the forward region

Jet plots as function of geometry, $m_H = 125 \text{ GeV}$

No big difference between FCal and sFCal seen in p_T -spectra Limited statistics does not allow to make definite conclusion from η plots

"Bunny ears" at the EC boundary are probably seen in η-spectra Limited statistics does not allow to make conclusion about forward jets

Maybe a bit more jets in sFCal w.r.t. FCal at high μ Δ Y and M(jj) distributions have no sizeable differences

125 GeV VBF H, μ =200, lin scale

"Bunny years" are probably seen at EC boundary for FCal at high μ Not enough statistics for third jets

No big difference between FCal and sFCal seen in p_T -spectra Limited statistics does not allow to make definite conclusion from η plots, although probably we have more jets in sFCal than in FCal

1000 GeV VBF H, μ =200, lin scale

"Bunny ears" at the EC boundary are probably seen in η -spectra Limited statistics does not allow to make conclusion about forward jets

1000 GeV VBF H, μ =200, log scale

Maybe a bit more jets in sFCal w.r.t. FCal at high μ ΔY and M(jj) distributions have no sizeable differences

1000 GeV VBF H, μ =200, lin scale

"Bunny years" are probably seen at EC boundary for FCal at high μ Not enough statistics for third jets

Conclusion/observations

Comparison of jet kinematics in Run 2 and high μ MC samples for VBF H \rightarrow WW \rightarrow IvIv at m_H =125 GeV and 1000 GeV is performed

- For μ =80 no big differences w.r.t. Run2
- Jet multiplicity increases with μ starting from μ =80
- A bit more jets in sFCal w.r.t. non-degraded FCal
- "Bunny ears" at EC boundary near FCal are seen?
- Some increase of average jet p_T with μ
- Results look much better then obtained with Run2 jet calibration

LC4TopoJets taken "as they are" is a good starting point

Problem: need to have more statistics especially for m_H =125 GeV 100K events per sample look sufficient number, HITS exist! Better to start xAOD production when all fixes related to jets/MET will be ready

Short-term plans

- Production of DxAODs for m_H =1000 GeV for all geometries Input files: Sven`s xAODs with towers; degraded FCal included
- Further analysis of existing PxAODs inside HWW analysis framework $m_H = 125$ GeV, harder cuts on jet p_T , limited η -acceptance etc.
- Produce new PxAODs after green light from sFCal community try all geometries and at least two masses, 125 and 1000 GeV look at My* jet collections, mostly LCTopo?
 better to do all fixes with jets BEFORE producing PxAODs, we need jobOptions to create DxAOD with "correct" jets (and MET?)
- Analysis of these PxAODs with RootCore and with HWW framework
- DxAODs and PxAODs for all samples including backgrounds
- In parallel: start to prepare COM note based on these studies

Backup slides

No big difference between FCal and sFCal seen in p_T -spectra Limited statistics does not allow to make definite conclusion from η plots

Jet kinematics in H→WW→IvIv events: DF-case

1000 GeV VBF H, μ =80, lin scale

"Bunny ears" at the EC boundary are probably not seen in η -spectra? Limited statistics does not allow to make conclusion about forward jets

1000 GeV VBF H, μ =80, log scale

Maybe a bit more jets in sFCal w.r.t. FCal at high μ Δ Y and M(jj) distributions have no sizeable differences

1000 GeV VBF H, μ =80, lin scale

"Bunny years" are probably seen at EC boundary at high μ Not enough statistics for third jets

1000 GeV VBF H, μ =140, log scale

No big difference between FCal and sFCal seen in p_T -spectra Limited statistics does not allow to make definite conclusion from η plots

Jet kinematics in H→WW→IvIv events: DF-case

1000 GeV VBF H, μ =140, lin scale

"Bunny ears" at the EC boundary are probably not seen in η -spectra Limited statistics does not allow to make conclusion about forward jets

Maybe a bit more jets in sFCal w.r.t. FCal at high μ Δ Y and M(jj) distributions have no sizeable differences

Jet kinematics in H→WW→IvIv events: DF-case

1000 GeV VBF H, μ =140, lin scale

"Bunny years" are seen at EC boundary at high μ Not enough statistics for third jets