Impact of sFCal Upgrades to the HL-LHC Upgrade Analysis VBF H->WW->IvIv

Doug Schaefer Alex Basan (CERN)

March 31, 2016

PUB Note Link in CDS https://cds.cern.ch/record/2140057 Higgs Group Approval Presentation http://cern.ch/ProspectsHWWVBF

Event Selection

Category	$N_{\rm jet} \ge 2$	$VBF \ production$
Pre-selection	Two isolated leptons ($\ell = e, \mu$) with opposite ch Leptons with $p_T^{\text{lead}} > 25$ and $p_T^{\text{sublead}} > 15$ $m_{\ell\ell} > 10$	harge
jet-corrected-track- $E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 20$	
General selection	$p_T^{jet} > 70 \ (60) \ \text{lead} \ (\text{sub-lead})$ $N_{b-jet} = 0 \ (\text{run on all jets before track confirmation})$ $p_T^{\text{tot}} < 20$ $Z/\gamma^* \rightarrow \tau\tau \ \text{veto} \ (\text{Collinear approx.} \ m_{\tau\tau} < 50 \ \text{GeV}$	Tight selection to deal with PU
VBF topology	$m_{jj} > 1250$ and $ \eta_j > 2.0$, opposite hemisphere No jets ($p_T > 30$) in rapidity gap Require both ℓ in rapidity gap	
$H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$ topology	$\begin{split} m_{\ell\ell} &< 60 \\ \Delta \phi_{\ell\ell} &< 1.8 \\ m_{\rm T} &< 1.07 \cdot m_H \end{split}$	

Table 1: Selection criteria used for the 14 TeV analysis. Pre-selection applies to all N_{jet} modes. The rapidity gap is the y range spanned by the two leading jets. The energy and p_T thresholds are in units of GeV.

Systematic Uncertainties

$$\mu = \frac{N_{\rm exp} - N_{\rm bkg}}{N_{\rm sig}}.$$

Significance =
$$\frac{N_{\text{sig}}}{\sqrt{N_{\text{bkg}} + \sum_{i=0}^{\text{bkg}} \sigma_{i,\text{bkg}}^2}}.$$

Results are shown with following signal (VBF & ggF) uncertainties:
1) No signal unc.
2) 1/2 of the Run-1 unc.
3) Run-1 unc.

	$N_{jet} \ge 2$		
Bkg. Process	14 TeV	Run-1	
WW	10	30	
VV	10	20	
tī	10	33	
tW/tb/tqb	10	33	
Z+jets	10	20	
W+jets	20	30	

Table 5: The total systematic uncertainty (in	%) for the background processes.	The uncertainties used in the Run-1
analysis [6] results are quoted.		

	$N_{jet} \ge 2$
ggF QCD scale	43
ggF QCD acceptance	4
ggF PDF	8
ggF UE/PS	9
ggF total	44
VBF QCD scale	1
VBF QCD acceptance	4
VBF PDF	3
VBF UE/PS	3
VBF total	6

Table 11: Current theoretical uncertainties (in %) for the 8 TeV analysis. The uncertainties are split into the QCD scale and acceptance uncertainties, PDF and UE/PS uncertainties.

Results

Scoping Scenario	N _{bkg}	N _{VBF}	NggF	N_{WW}	N_{VV}	$N_{t\bar{t}}$	N_t	$N_{\rm Z+jets}$	N_{W+jets}
Reference	410	200	57	48	55	146	20	27	0
Middle	457	153	46	91	36	164	27	23	3
Low	408	93	51	104	10	141	17	37	2

Table 6: The signal and background event yields as expected at 14 TeV, with pile-up of 200 inelastic collisions per bunch crossing and 3 ab^{-1} of data after all selection requirements in Table 3 for each of the three scoping scenarios.

	Scoping Scenario	σ_{μ}	Significance
S/B~0.49 (gold)	Reference	0.20	5.7
, () /	Middle	0.25	4.4
	Low	0.39	2.7

Table 7: The expected σ_{μ} and significance are shown for the three scoping scenarios considering the same level of theoretical systematic uncertainties on the VBF and ggF Higgs production taken from Table 4.

- Gains of 36 (49)% for the Middle (Reference) relative to the Low in signal strength uncertainty
- Analysis was optimized on signal strength NOT on significance.

Loosen Selections

- Mjj selection is removed and jet pT selection is lowered to 40 or 50 GeV
- The fraction of HS and PU jets is shown for the signal and backgrounds
- Fraction of pileup jets is reduced with the higher jet threshold

Loosen Selections

- Mjj selection is removed and jet pT selection is lowered to 40 or 50 GeV
- Fraction of pileup jets is reduced with the higher jet threshold
- Fraction of PU jets increases beyond |eta|>3.8

sFCal Plans

- Plan to optimize the selection cuts for the best mu-error with the following improvements on the "Reference" scenario
 - Reduction in PU jets of 50%, 80%, and 90% with 100% HS jet efficiency in the region of $3.2 < |\eta| < 4.5$
 - Results on next slide

• Loosen the jet pT requirements to 40, 50 GeV & optimize on Mjj

 sFCal with 5xPU jet rejection improves on the current analysis by ~28%. 10x with jet pT>50 GeV has up to 35% improvement in mu-error. Need to reach ~factor of 5 PU jet rejection to have a large impact

Conclusions

- Need to reach ~factor of 5 PU jet rejection to have a large impact
- sFCal having a factor of 5 rejection gives ~28% improvement in mu-error
- Factor of 10 rejection of PU jets increases improvement to 35%.
- Little concerned that removing |eta|>3.8 jets would also improve the reference analysis. Then the sFCal improvements would be smaller.

Backup

Preliminary sFCal Upgrade Impact Reference Scenario

- Explored the potential improvements in PU jet rejection of a factor of 2, 5, and 10 for jets with 3.2<| eta|<3.8. So PU jet acceptance of 2%, 1%, 0.4%, and 0.2%.
- Caveats:
 - Statistics are low
 - After the tight Mjj selection, most of the "tagging"jets in the forward region are HS jets.
 Improvement may be possible with looser selections
 - The (Central jet veto) veto on jets between the tagging jets are mostly more central |eta|<3.2
- QCD WW background, which comes often from 1HS and 1PU jet, is reduced by 30% in the x10 scenario. It is 6% of the total bkg.

Full Signal uncertainties

sFCal	Sign.	mu_err	%
Nominal	5.7	0.20	N/A
x2	5.73	0.199	0.5
x5	5.81	0.196	2.0
x10	5.90	0.193	3.6

Preliminary sFCal Upgrade Impact

- Explored the potentia rejection of a factor c eta|<3.8. So PU jet a 0.2%.
- Caveats:
 - Statistics are low
 - After the tight Mjj jets in the forward 2 Improvement may selections
 - The (Central jet v tagging jets are r
- QCD WW background, which comes onen non-moand 1PU jet, is reduced by 30% in the x10 scenario. It is 6% of the total bkg.

Study does not optimize the	0.20
analysis for the sFCal	0.199
Changes	0.196
to 3.8 in eta.	0.193

uncertainties

err

%

N/A

0.5

2.0

3.6