Evaluations of Physics Performance for High Mass VBF Final States in the Presence of Pile-up

Peter Loch[†], John Rutherfoord, Andrew Steinmetz University of Arizona

[†]US ATLAS Scholar, LBNL 2014-15

Motivation and Goal

- Importance of forward calorimetry for searches with ATLAS at future (s/HiLum)LHC operations
 - VBF and VBS important production mechanism at $\sqrt{s} = 14$ TeV
 - Electroweak heavy resonance production
 - Heavy Higgs-like/excited Higgs states
 - Multiple boson production and coupling anomalies
 - SM: di-bosons, triple-bosons, quarticbosons... - precision explorations in new kinematic domains, self-coupling including for Higgs
 - BSM: coupling anomalies
 - Distinctive quark jet pattern tag VBF/VBS
 - Two forward-going (tag) quark jets
 - $\Delta \eta_{\text{tag-jets}} \nearrow \text{ with } M \nearrow \text{ or } \sqrt{\hat{s}} \nearrow$
 - $\Delta \eta_{\text{tag-jets}} \nearrow \text{with } \sqrt{s} \nearrow$

General region of interest $\sqrt{\hat{s}}/\sqrt{s} \gtrsim 0.05$ (TeV scale)

 $\sigma_{qq \rightarrow Hqq}/\sigma_{gg \rightarrow H}$ is $O(10\%) @ M_H = 125 \text{ GeV}$ $\sigma_{qq \rightarrow H'qq}/\sigma_{gg \rightarrow H'}$ can be $O(1) @ M_{H'} = 1 \text{ TeV}$

Slide 2

Motivation and Goal

- Importance of forward calorimetry for searches with ATLAS at future (s/HiLum)LHC operations
 - VBF and VBS important production mechanism at $\sqrt{s} = 14$ TeV
 - Electroweak heavy resonance production
 - Heavy Higgs-like/excited Higgs states
 - Multiple boson production and coupling anomalies
 - SM: di-bosons, triple-bosons, quarticbosons... - precision explorations in new kinematic domains, self-coupling including for Higgs
 - BSM: coupling anomalies
 - Distinctive quark jet pattern tag VBF/VBS
 - Two forward-going (tag) quark jets
 - $\Delta \eta_{\text{tag-jets}} \nearrow \text{with } M \nearrow \text{ or } \sqrt{\hat{s}} \nearrow$
 - $\Delta \eta_{\text{tag-jets}} \nearrow \text{with } \sqrt{s} \nearrow$

Leading & sub-leading jet η in $qq \rightarrow qqH'$ with $M_{H'} = 1$ TeV (QCD jets from MB for reference)

Slide 3

VBF Signatures in High Pile-up

- Example: new physics at TeV scale
 - Heavy Higgs-like particle H'produced in longitudinal WW scattering
 - Postulated mass $M_{H'} = 1$ TeV
 - Only considered decay is $H' \rightarrow ZZ$, $Z \rightarrow \ell \ell (\nu \nu)$
 - Associated tag jets produced by scattered quarks
 - Distinguished jet pattern
 - Two tag jets (widely) separated in η
 - Separation increases with increasing (1) $M_{H'}$ and (2) \sqrt{s}
 - Jets are typically low $p_{\rm T} \sim 20 200$ GeV
 - Effects of pile-up (PU)
 - Disturbs distinguished jet pattern
 - Can fake one of the tag jets especially the one sub-leading in p_T (similar kinematic regime)
 - Can deteriorate the response of true signal jets resolution and scale

Outline of Study

- Physics signal and background (pile-up) simulation
 - *H*′ (signal) production using Pythia8
 - Two center-of-mass energies \sqrt{s} = 7 TeV and \sqrt{s} = 14 TeV
 - Record stable ($c\tau > 10$ mm) particles emerging from the interaction
 - Corresponding pile-up simulation
 - Dynamic overlay of generated minimum bias (MB) interactions at stable particle level
 - Number of MB interactions overlaid on a given signal interaction is sampled from Poisson distribution around central values $\langle \mu \rangle = 20$, $\langle \mu \rangle = 50$, $\langle \mu \rangle = 100$
- Signal definitions
 - *H'* decay products removed from final state
 - Not relevant for present study
 - All remaining particles within $|\eta| < 5$
 - No further kinematic selection applied
 - Towers within $|\eta| < 4.9$
 - Simple detector model collects all remaining particles into towers in (η, φ) space various configurations (next slide)
 - No further kinematic selection applied
 - Jets are constructed from particles and tower configurations
 - Anti- k_t jet clustering with distance parameter R = 0.4
 - Two samples: $p_{\rm T}^{\rm jet} > 20$ GeV, $p_{\rm T}^{\rm jet} > 40$ GeV

Tower Configurations

Slide 6

7 TeV

FCal

0

2

3

4

η subleading jet Two leading particle jets $p_{\rm T} > 20 \text{ GeV}$ Relative Double-jet tagging efficiency 14 TeV $|\eta_{\text{subleading jet}}| < 3$ Ca $|\eta_{\text{subleading jet}}| < 2$ 0.7E $|\eta_{\text{subleading jet}}| < 1$ ≈ 38% 0.6 60 H 0.5 0.4 40 0.3 FCal 0.2 20 coverage 0 0.5-3 2 3 4 $\eta_{\text{subleading jet}}$ Detector coverage |η| Maximum double-tag efficiency Slide 7 affected by limited detector acceptance $|\eta| < 4.9$ and jet $p_{\rm T}$ -threshold!

Pile-up Mitigation

- Jet grooming techniques considered for pile-up mitigation
 - Subtraction of pile-up contribution from $p_{\rm T}^{\rm jet}$
 - Employs jet area technique $p_{T,corr}^{jet} = p_{T,raw}^{jet} \rho A^{jet}$
 - $\rho = \frac{\partial^2 p_T}{\partial \eta \partial \varphi}$ measured by median transverse momentum density of event – reflects softer event p_T -flow induced by pile-up (dominant) and underlying event activity
 - Trimming of remaining jet
 - Removes small sub-jets from reconstructed jets improves jet response, single jet mass measurement etc.

D.Krohn, J.Thaler, L.Wang, JHEP 02 (2010) 84

Pile-up Mitigation

- Jet grooming techniques considered for pile-up mitigation
 - Subtraction of pile-up contribution from $p_{\rm T}^{\rm jet}$
 - Employs jet area technique $p_{T,corr}^{jet} = p_{T,raw}^{jet} \rho A^{jet}$
 - $\rho = \frac{\partial^2 p_T}{\partial \eta \partial \varphi}$ measured by median transverse momentum density of event – reflects softer event p_T -flow induced by pile-up (dominant) and underlying event activity
 - Trimming of remaining jet
 - Removes small sub-jets from reconstructed jets improves jet response, single jet mass measurement etc.

VBF Jets with Pile-up (1)

pile-up Leading and sub-leading jet kinematics at $\sqrt{s} = 7$ TeV

VBF Jets with Pile-up (2)

pile-up Leading and sub-leading jet kinematics at $\sqrt{s} = 14$ TeV

VBF Events with Pile-up

Jets From Pile-Up at $\sqrt{s} = 14$ TeV

Efficiency of Pile-Up Suppression

- Jets with pile-up are matched with signal jets
 - Signal jets are particle level jets without pile-up (⟨μ⟩ = 0.
 "truth")
 - Only the two leading jets considered – maybe not sufficient for signal selection (additional cuts on di-jet angles and/or mass, include third jet)
 - Radiation patterns are observed where two leading jets are relatively close
 - Jets with pile-up are groomed
 - PU subtraction only standard ATLAS correction for Run I and Run II
 - Matching is geometric
 - Jets are matched if $\Delta R < 0.1$

With pile-up!

Effect of Granularity

- Reconstruct jets with different tower grids
 - No towers (particle level), fine grid, medium grid, coarse grid
 - See earlier slide <u>"Tower Configurations"</u>
 - All jets are reconstructed with pile-up
 - **Groomed** and **matched** with "truth" signal jet reconstructed with $\langle \mu \rangle = 0$
 - Findings

With pile-up

- Fine tower grid very similar to particle level expected
- Medium grid (~ATLAS FCal) has reduced efficiency for $|\eta| > 2.5$
- Coarse grid (worse than ATLAS FCal) significant efficiency losses

Efficiency Estimate $\langle \mu \rangle = 20$

With pile-up!

Efficiency Estimate $\langle \mu \rangle = 50$

With pile-up!

Efficiency Estimate $\langle \mu \rangle = 100$

Detector coverage |η|

With pile-up!

Conclusion (1)

- Efficient VBF/VBS tagging requires largest η -coverage
 - Tag jets will be important discovery tools
 - Higher \sqrt{s} pushes jets more forward at a ~fixed \sqrt{s} as does corresponding higher reach in \sqrt{s}
 - EW production of new particles and multi-boson final states at high $\sqrt{\hat{s}}$ is VBF/VBS driven makes tagging jets at high $|\eta|$ much more important
 - Small cross-sections of prospective VBF-produced heavy particles requires highest detection efficiency
 - Present and future pile-up interferes with VBF tagging
 - Fake jets
 - Loss of precision of jet kinematics measurement
- Higher FCal granularity
 - First impression: better performance
 - Full evaluation needs detector effects Sven Menke/Walter Lampl are working on FullSim of highly granular FCal for sLHC/HiLum
 - Potential particle flow with forward tracking
 - Improved pile-up suppression for low $p_{\rm T}$ jets higher signal efficiency

Conclusions (2)

Fabrice Balli (JES/JER meeting January 20, 2015) Run II $p_{\mathrm{T}}^{\mathrm{corr}}/p_{\mathrm{T}}^{\mathrm{true}}$ IBL services may degrade FCal jet performance Tag jets are low in p_T! Tag efficiency may be problematic $\sqrt{s} = 13 \text{ TeV}$ 25 ns 0.7 We need FullSim with Run II $2.8 < |\eta| < 3.2$ conditions to study this Pile-up may be less of a concern for 25 ns running 20 10 15 35 • Jet-area-based subtraction expected to work (blue) – without the additional out-of-time pile-up correction needed for $|\eta| > 2.5$ (in μ $/p_{\mathrm{T}}^{\mathrm{true}}$ pT^{corr} / red) Statistically limited, very preliminary plots! 0.8 0.7 Jet-area-based pile-up subtraction $\sqrt{s} = 13$ TeV, 25 ns $3.6 < |\eta| < 4.5$ based on ρ Additional correction for out-of-<u>|||||||||</u> 10 15 time pile-up (essential in Run I at 50 20 25 30 ns) Slide 20

Backup Material

More on Effect of Jet Grooming

• Difference in jet number density per event at given η

Signal & Pile-up Generation

- Signal
 - Pythia8.165
 - $M_{H'} = 1$ TeV, $\sigma_{M_{H'}} \approx 520$ GeV (default settings for $H' \to ZZ \to \ell^{\pm} \ell^{\mp}(\nu \nu)$)
 - CTEQ6.1 LO PDF
 - Underlying event tune 4C
 - 500,000 signal events for each center-of-mass
 - $\sqrt{s} = 7$ TeV & $\sqrt{s} = 14$ TeV
- Minimum bias for pile-up
 - Pythia8.165
 - CTEQ6.1 LO PDF
 - Underlying event tune 4C
 - 100,000,000 MB events available
 - Need approximately $N_{\text{signal events}} \times (\langle \mu_{\text{max}} \rangle + (3 4) \times \sqrt{\langle \mu_{\text{max}} \rangle}) \approx 70,000,000 \text{ MB}$ events (at least) for completely independent and non-repetitive pile-up sample
- Output
 - All stable particles from signal and MB
 - $c\tau \ge 10 \text{ mm}$