Tracking Performances

outline

- Introduction
- release-00-06-00
- new SVD L3 position
- Conclusions

<u>Jakob Lettenbichler</u> & Giulia Casarosa

for the Tracking Group

23nd Belle II General Meeting ~ February, 3rd 2016

Track Reconstruction (1)

Track Reconstruction (2)

VXD pattern recognition - a glimpse around the corner

Future state of the trackFinderVXD-approach (event-part)

Track Parameterisation

- POCA = Point Of Closest Approach
- → d₀ is the 2d signed distance of the POCA from the z axis, the sign depends on the angular momentum of the track (>0 in the fig.)
- → ϕ_0 is the angle between pt and the x axis at the POCA, $\phi_0 \in [-\pi, \pi]$
- → the sign of ω, the curvature, is the same as the charge of the track (>0 in the fig.)

longitudinal view

- → tanλ is the ratio of p_z and p_t, λ ∈ [-π,π]
- z₀ is the signed distance of the POCA from the transverse plane

relase 00-06-00 performances

 \sim latest release available \sim

Integrated Efficiency

this study is based on a sample of 10k Y(4S) generic decays reconstructed with the official standard reconstruction with the addition of the MC information

definition	efficiency (%)	release 00-05-03	release 00-06-00	revision 24691
#MCParticles with at least one associated Track # MCParticles	physical	85.6±0.1	85.3±0.1	85.3±0.1
#MCTrackCands with at least one associated Track #MCTrackCands	geom. accept. & det. ineff. factored out	94.0±0.1	93.8±0.1	93.8±0.1
#MCTrackCand with at least one associated TrackCand #MCTrackCands	pattern recognition	96.6±0.1	94.9±0.1	95.0±0.1

NOTE: MCTrackCand from ideal pattern recognition

- changes since r00-05-03: new CDC tracking (r00-06-00) and new SVD L3-geometry (r24691)
- pattern recognition efficiency is slightly worse compared to r00-05-03
- physical efficiency is compatible with last release

Jakob Lettenbichler

efficiency & purity

Efficiency VS Transverse Momentum

Jakob Lettenbichler

release 00-06-00

Efficiency VS Polar and Azimuthal Angles

Jakob Lettenbichler

efficiency

& purity

release 00-06-00

quality Track Param

Track Parameters Resolutions (reco-true)

Track Parameters Resolutions (reco-true)

Jakob Lettenbichler

track

quality

23rd B2GM ~ KEK

release 00-06-00

track quality

Track Parameters Pulls (reco-true)/error

Impact Parameters Errors VS pt

Jakob Lettenbichler

Comparison with BABAR Tracking

 Belle II VXD Tracking performs twice better than BABAR, when PXD clusters are attached to the track (66% of tracks have PXD cluster attached)

Conclusions

- Performances of Tracking in release-00-06-00 are mostly compatible with previous release
- New SVD L3 position does not have a visible impact on the performance
- An important step in tracking development was made: the new CDC Track Finder replaced Trasan and MC-free combining of TCs
 - the new CDC pattern recognition efficiency is compatible with Trasan
 - \sim problems in fitting CDC track candidates at low pt which dropped relative efficiency by ${\sim}10\%$ are now gone
- A significant drop in number of tracks with PXD Clusters have been observed. A possible cause is the VXDCDCMatcher, which is now MC-free.
- Still a lot to improve (efficiency of using the PXD clusters, bias in the impact parameters, underestimation of the track parameters errors, ...)
- Still a number of missing parts in the tracking simulation (PXD data reduction simulation, MC-based track merging, extrapolation toward the CDC and the VXD, ...)
- write to <u>tracking@belle2.kek.jp</u> for feedbacks and questions

Thank You!

Efficiency VS Transverse Momentum

Jakob Lettenbichler

efficiency

& purify P

release-00-05-03

quality Track Parameters Resolutions (reco-true)

Jakob Lettenbichler

track