
Draft for ctd-presentation

Jakob Lettenbichler
for the

Tracking Group of Belle II

No eyecandy yet – will be added later

 2

Overview
● Belle II VXD Detector
● The VXDTF

– SectorMap

– Current performance

● VXDTF-refactoring
– General approach

– SpacePoints

– SectorMap II

– SegmentNetworkProducer

● Next steps

 3

Belle II VXD

Vertex Detector (VXD) consists of:
– 2 layers of DEPFET Pixels (PXD), @ radii: 1.4, 2.2 cm

– 4 layers of double sided silicon strip (DSSD) sensors (SVD), @ radii: 3.9, 8, 11.5, 14 cm

9

 4

VXD Tracking has to deal with..
● 1.5 T magnetic field
● Windmill design with overlaps & slanted sensor
● HLT: 4 layer SVD tracking (on-line)
● Fast reco: 6 layer (SVD+PXD) tracking with

predefined ROIs for the PXD (off-line)

● Goal: reco down to pT = 50 MeV/c

● ghost hits (SVD)
● high energy deposit for low momenta (pT< 100

MeV/c)
● Loopers/Curlers for tracks with pT< 500 MeV/c

 5

● TC: Track Candidate
● CA: Cellular Automaton
● TrackFit: e.g. CircleFit or Kalman Filter (KF)
● Hopfield NN: a neural network of Hopfield type

The basic VXD TrackFinder (VXDTF) approach

CA Hopfield NN

repeat with
different settings

for different
momentum ranges

Reduces combinatorics
using a „SectorMap“

Step 1:
find TCs

Step 2:
check TC

quality

Step 3:
find clean

subset

trackFit

SVD
Clusters (1D)

PXD
Clusters (2D)

Clean
TC set

 6

 The SectorMap

● Sensors are sub-divided into Sectors

● Each sector knows its friend sectors

● Sectors are friends if a track from the vertex
can pass through both of them

● SpacePoints are sorted into sectors

● Only SpacePoints in friend sectors can be combined

Sensor plane
(side view)

 7

 The SectorMap - II
● Friend sectors are combined via training on MC-data

● Sector-combinations store filter-cuts used for reducing
combinatorics of SpacePoints

● 2-,3- & 4-SpacePoint-cuts are independent for each
sector-combination

● Different sectorMaps
(with their independent
cutoff-sets) for different
momentum ranges

● About 10 sectors per
sensor are used

 8

VXDTF - current performance

Efficiency in p 91.9%

Efficiency in pT 92.2%

geometrical acceptance and detector efficiency factored out

Efficiency of ~85%
@ pT = 100 MeV/c

Efficiency of ~95%
@ pT = 500 MeV/c

Efficiency of ~75%
@ pT = 50 MeV/c

[degree]seed angle in
0 50 100 150 200 250 300 350

ef
ci

en
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efciency of

0.919SVDr23538L3DisplacementpT438MeV340RMSbetaGamma1007.82wRMS751.86Efciency

Efciency of

[degree]seed angle in
20 40 60 80 100 120 140

ef
ci

en
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efciency of

0.920SVDr23538L3DisplacementpT438MeV340RMSbetaGamma1007.82wRMS751.86Efciency

Efciency of

Y(4s) results with typically 10 tracks per event
TODO: Belle I & BaBar Data

 9

VXDTF – refactoring goals
● About 2 years to go, so we are fine? → No we

refactor the code, because:
● We want to Simplify debugging:

– High coverage of unit- and integration tests

– High flexibility using modular design (CA, CKF, DAF,
other filters replaceable)

– Allow shared workload on several developers

● We want to have extended training capabilities:
– Allow bigger sample sizes for sectorMap-training

– More tools for finding issues (loops in sectorMap, bad
cuts, automatized cut-selection)

 10

Planned modules for the VXDTF (event-part)

KF (genFit)

CA

CKF (genFit)

SpacePointTrackCand

Hopfield

Greedy

repeat with
different settings

light blue box: module
green-ish box: remark

red box: TF steps
text w/o box: interface-container

Share principle of
SecMap & Segments

SVD
Clusterizer

PXD
Clusterizer

SpacePoint
Creator

PXD

SpacePoint
Creator

SVD

Clusters of detector type
SpacePoint

Independent from
Detector type

Orange box:
Responsibility of detector groups

Violet box:
Responsibility of tracking group

Segment-
Network-
Producer

Step 1: TF
preparation

Step 2:
actual TF

Step 3:
Quality

Estimator

Step 4:
find clean

subset

SegmentNetwork

Referee

Step 5:
reserve

hits

CircleFit

LineFit

DAF (genFit)

SPTC-
Network-
Producer

HelixFit

Other
Modules:

SPTCNetwork

TFAnalizer

TC-converter

Random

● CA: Cellular Automaton

● KF: Kalman Filter

● DAF: Deterministic
Annealing Filter

● Hopfield: a neural network
of Hopfield type

● SPTC:
SpacePointTrackCandidate

 11

SpacePoints
● Detector-independent – „just a point in 3D-Space“

– Used for PXD and SVD

– Hides detector specific treatment from TF

– Quality indicator carrying extra info

● SVD (Double sided strip detector):
– Combination of 1D-Clusters shall be done using:

● Use of Energy deposit correlations
● Hit time correlations (time resolution up to ~2 ns), curler detection
● Further things to be investigated

● PXD
– Energy deposit possible

– (Bad) Cluster shape

 12

SegmentNetworkProducer I
Some thoughts:

● SectorMap is actually a directed graph without loops
(like the CA)

– Each event a different subGraph of that SectorMap is
needed → sectors having SpacePoints in that event

– The sectors containing SpacePoints in an event are
called ActiveSectors and form that subGraph

● But SpacePoints and track segments can form such
graphs too!

● This means that there are a lot of graphs – or networks –
to be formed within an event → lets unify this a bit:
DirectedNodeNetworks

 13

SegmentNetworkProducer II
Basic principle of DirectedNodeNetwork (DNN):
● Objects are related forming a network, where objects treated

as Nodes and Links/Edges indicate their compatibility
– Nodes can carry anything (sectors, hits, segments, integers, ..) as

„node-entries“

– Only following requirements to node-entries:
● Minimal requirements needed for std::vector (e.g. Public constructor

without arguments)
● '==' operator must be defined

– Cell-features or other „meta info“ can be attached via template
parameter → CA could be applied to any network without
modifying the Node-Entries

– Links/Edges carry no extra info to minimize overhead.

 14

SegmentNetworkProducer III
In Action:
● SpacePoints are matched to their sectors → ActiveSectors store

event-dependent info
● ActiveSectorNetwork: built from Sectors which have got hits in that

event
– only compatible (Active-)sectors are linked

– '0/1'-hit-filter: only physically relevant hits can form a sufficiently long
chain of ActiveSectors

– Serves as input for the SpacePointNetwork

● SpacePointNetwork: built from SpacePoints which are in
ActiveSectors of ActiveSectorNetwork
– Two hits get linked, when 2-hit-tests are passed (e.g. dist3D)

– '2'-hit-filter

– Serves as input for the SegmentNetwork

 15

VXDTF2 – SegNetProducer III
● SegmentNetwork: build from SpacePoint-

combinations in SpacePointNetwork
– Two hits-pairs (→ segments) get linked, when 3-hit-

tests are passed (e.g. angle3D, FastBDT (see Thomas
Madleners talk)

● „A linked pair of nodes of one network becomes the node of
the next one“

– '3'-hit-filter

– Serves as input for the CA or the CKF

 16

VXDTF2
● Some preliminary results (if I am successful in

creating some)

 17

VXDTF2 – next steps
● Combined beam test 2016
● Finishing VXDTF2 draft stage and implementing

proof-of-concepts for CKF and DAF
● Tons of studies

 18

This is it
● Many thanks to all members of the Tracking group,

especially:
– Rudolf Frühwirth

– Eugenio Paoloni

– Martin Heck

– Martin Ritter and Christian Pulvermacher

– Thomas Madlener

– Tobias Schlüter

– Giulia Casarosa

 19

Your suggestions?
● What was missing
● What was too detailed
● What should be removed
● What should be changed

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

