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Overview
● Belle II VXD Detector
● The VXDTF 

– SectorMap

– Current performance

● VXDTF-refactoring
– General approach

– SpacePoints

– SectorMap II

– SegmentNetworkProducer

● Next steps
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Belle II VXD

Vertex Detector (VXD) consists of:
– 2 layers of DEPFET Pixels (PXD), @ radii: 1.4, 2.2 cm

– 4 layers of double sided silicon strip (DSSD) sensors (SVD), @ radii: 3.9, 8, 11.5, 14 cm

9
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VXD Tracking has to deal with..
● 1.5 T magnetic field
● Windmill design with overlaps & slanted sensor
● HLT: 4 layer SVD tracking (on-line)
● Fast reco: 6 layer (SVD+PXD) tracking with 

predefined ROIs for the PXD (off-line)

● Goal: reco down to pT = 50 MeV/c

● ghost hits (SVD) 
● high energy deposit for low momenta (pT< 100 

MeV/c)
● Loopers/Curlers for tracks with pT< 500 MeV/c
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● TC: Track Candidate
● CA: Cellular Automaton
● TrackFit: e.g. CircleFit or Kalman Filter (KF)
● Hopfield NN: a neural network of Hopfield type

The basic VXD TrackFinder (VXDTF) approach 

CA Hopfield NN

repeat with 
different settings 

for different 
momentum ranges

Reduces combinatorics 
using a „SectorMap“

Step 1: 
find TCs

Step 2: 
check TC 

quality

Step 3: 
find clean 

subset

trackFit

SVD 
Clusters (1D)

PXD 
Clusters (2D)

Clean 
TC set
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 The SectorMap

● Sensors are sub-divided into Sectors

● Each sector knows its friend sectors

● Sectors are friends if a track from the vertex
can pass through both of them

● SpacePoints are sorted into sectors

● Only SpacePoints in friend sectors can be combined

Sensor plane
(side view)
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 The SectorMap - II
● Friend sectors are combined via training on MC-data

● Sector-combinations store filter-cuts used for reducing
combinatorics of SpacePoints

● 2-,3- & 4-SpacePoint-cuts are independent for each
sector-combination

● Different sectorMaps
(with their independent
cutoff-sets) for different
momentum ranges

● About 10 sectors per
sensor are used
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VXDTF - current performance

Efficiency in p 91.9%

Efficiency in pT 92.2%

geometrical acceptance and detector efficiency factored out

Efficiency of ~85% 
@ pT = 100 MeV/c

Efficiency of ~95% 
@ pT = 500 MeV/c

Efficiency of ~75% 
@ pT = 50 MeV/c
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Y(4s) results with typically 10 tracks per event
TODO: Belle I & BaBar Data
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VXDTF – refactoring goals
● About 2 years to go, so we are fine? → No we 

refactor the code, because:
● We want to Simplify debugging:

– High coverage of unit- and integration tests

– High flexibility using modular design (CA, CKF, DAF, 
other filters replaceable)

– Allow shared workload on several developers

● We want to have extended training capabilities:
– Allow bigger sample sizes for sectorMap-training

– More tools for finding issues (loops in sectorMap, bad 
cuts, automatized cut-selection)
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Planned modules for the VXDTF (event-part)

KF ( genFit )

CA

CKF ( genFit )

SpacePointTrackCand

Hopfield

Greedy

repeat with 
different settings

light blue box: module 
green-ish box: remark 

red box: TF steps 
text w/o box: interface-container

Share principle of 
SecMap & Segments

SVD 
Clusterizer

PXD 
Clusterizer

SpacePoint 
Creator 

PXD

SpacePoint 
Creator 

SVD

Clusters of detector type
SpacePoint

Independent from 
Detector type

Orange box: 
Responsibility of detector groups

Violet box: 
Responsibility of tracking group

Segment- 
Network- 
Producer

Step 1: TF 
preparation

Step 2: 
actual TF

Step 3: 
Quality 

Estimator

Step 4: 
find clean 

subset

SegmentNetwork

Referee

Step 5: 
reserve 

hits

CircleFit

LineFit

DAF ( genFit )

SPTC- 
Network- 
Producer

HelixFit

Other 
Modules:

SPTCNetwork

TFAnalizer

TC-converter

Random

● CA: Cellular Automaton

● KF: Kalman Filter

● DAF: Deterministic 
Annealing Filter

● Hopfield: a neural network 
of Hopfield type

● SPTC: 
SpacePointTrackCandidate
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SpacePoints
● Detector-independent – „just a point in 3D-Space“

– Used for PXD and SVD

– Hides detector specific treatment from TF

– Quality indicator carrying extra info

● SVD (Double sided strip detector):
– Combination of 1D-Clusters shall be done using:

● Use of Energy deposit correlations
● Hit time correlations (time resolution up to ~2 ns), curler detection
● Further things to be investigated

● PXD
– Energy deposit possible

– (Bad) Cluster shape
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SegmentNetworkProducer I
Some thoughts:

● SectorMap is actually a directed graph without loops 
(like the CA)

– Each event a different subGraph of that SectorMap is 
needed → sectors having SpacePoints in that event

– The sectors containing SpacePoints in an event are 
called ActiveSectors and form that subGraph

● But SpacePoints and track segments can form such 
graphs too!

● This means that there are a lot of graphs – or networks – 
to be formed within an event → lets unify this a bit:
DirectedNodeNetworks
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SegmentNetworkProducer II
Basic principle of DirectedNodeNetwork (DNN):
● Objects are related forming a network, where objects treated 

as Nodes and Links/Edges indicate their compatibility
– Nodes can carry anything (sectors, hits, segments, integers, ..) as 

„node-entries“

– Only following requirements to node-entries:
● Minimal requirements needed for std::vector (e.g. Public constructor 

without arguments)
● '==' operator must be defined

– Cell-features or other „meta info“ can be attached via template 
parameter → CA could be applied to any network without 
modifying the Node-Entries

– Links/Edges carry no extra info to minimize overhead.
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SegmentNetworkProducer III
In Action:
● SpacePoints are matched to their sectors → ActiveSectors store 

event-dependent info
● ActiveSectorNetwork: built from Sectors which have got hits in that 

event
–  only compatible (Active-)sectors are linked 

– '0/1'-hit-filter: only physically relevant hits can form a sufficiently long 
chain of ActiveSectors

– Serves as input for the SpacePointNetwork

● SpacePointNetwork: built from SpacePoints which are in 
ActiveSectors of ActiveSectorNetwork
– Two hits get linked, when 2-hit-tests are passed (e.g. dist3D)

– '2'-hit-filter

– Serves as input for the SegmentNetwork
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VXDTF2 – SegNetProducer III
● SegmentNetwork: build from SpacePoint-

combinations in SpacePointNetwork
– Two hits-pairs (→ segments) get linked, when 3-hit-

tests are passed (e.g. angle3D, FastBDT (see Thomas 
Madleners talk)

● „A linked pair of nodes of one network becomes the node of 
the next one“

– '3'-hit-filter

– Serves as input for the CA or the CKF
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VXDTF2
● Some preliminary results (if I am successful in 

creating some)
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VXDTF2 – next steps
● Combined beam test 2016
● Finishing VXDTF2 draft stage and implementing 

proof-of-concepts for CKF and DAF
● Tons of studies
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This is it
● Many thanks to all members of the Tracking group, 

especially:
– Rudolf Frühwirth

– Eugenio Paoloni

– Martin Heck

– Martin Ritter and Christian Pulvermacher

– Thomas Madlener

– Tobias Schlüter

– Giulia Casarosa
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Your suggestions?
● What was missing
● What was too detailed
● What should be removed
● What should be changed
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