DHPT 1.1 CML Driver Issues

Hans Krüger 25.2.2016

DHPT CML Driver

• Changes from DHPT1.0 to DHPT1.1

- Layout extracted with all parasitic elements
- Current in the main stage expected to be ~20mA after improvement of the transistor layout
- However measurements on DHPT 1.1 indicated ~10mA only

DHPT CML Driver

 Possible explanation: layout extraction underestimated the **parasitic** resistances R_VDD and R_VSS on the power lines

Measurement of the Parasitic Resistance R_VDD

- Measure V_HI as a function of I_VDD_CML by changing IBIAS
 - no termination at driver output
 - no data line switching

Measurement of the Parasitic Resistance R_VDD

- Measurements indicate a parasitic resistance of about 5 Ohm in the VDD_CML line
- This is in agreement with the extraction of the parasitic elements of the layout, however this does not explain the loss of drive strength.

Measurement of the Parasitic Resistance R_VSS

• Measure V_IBIASD_PAD as a function of I_VDD_CML by changing IBIAS, no termination at driver output

→ V_IBIASD_PAD = VSS_CML_local + const = VSS_CML + I_VDD_CML x R_VSS

Measurement of the Parasitic Resistance R_VSS

- Measurements indicate a parasitic resistance of about 36 Ohm in the VSS_CML line
- This is not in agreement with the simulation of the extracted layout which also shows ~5 Ohm parasitic resistance

Issue with the RC-extraction of the layout

• The extraction tool models the silicon substrate as a perfect conductor (R_SUB = 0 Ohm) and VSS_CML ins connected to the bulk with a lot of substrate contacts

→ Underestimation of the resistance in VSS_CML

Proof of the Explanation

We removed the substrate contacts in the layout and extracted the parasitics again
R_VSS_CML ~ 30 Ohm

CML_TX Layout toward DHPT12

- vertical connection (M2→M9 for VDD_CML and M4→M9 for VSS_CML
- separate VSS and PSUB for Driver current mirror and switches
- avoid M1 connection between separate circuit blocks

I.Kishishita

Serial-Resistance

	Assura, typical	Assura, worst	Calibre, typical
VDD_CML	49.3 mΩ	66.5 mΩ	53.0 mΩ
VSS_CML	114.1 mΩ	151.4 mΩ	115.2 mΩ

 ΔR_{serial} : ~30% corner dependence, and ~10% between Assura and Calibre

I.Kishishita

Summary

- The parasitic resistance in the power lines of the CML driver was underestimated (~5 Ohm as extracted would have been acceptable but the measurements indicated 36 Ohms in VSS_CML).
- The extraction tool underestimated the resistance of the VSS line because VSS is connected to the substrate which is modeled as a perfect conductor (the real substrate resistivity is 10 Ohm · cm) → full R-C substrate modelling is complicated and usually only done for pure RF circuits
- By the removing the substrate contacts, the extraction tool gives the same parasitic resistance as measured.
- Weak spots in the power line layout have been indicated and fixed.
- During the review of the layout hot spots with too high current densities (→ long time reliability) were spotted and fixed as well

Outlook

- We are planning a re-submission of the DHPT (\rightarrow 1.2) with an improved power layout of the CML driver
- The DHPT 1.1 is still usable for pilot (and PF) module production
- The re-design is the chance to still include changes in the digital part, in case current system test (gated mode etc.) should conclude that.
- Timeline
 - TSMC 65 MPW tape-out dates (11 weeks turn-around time)
 - March 2 (too early)
 - March 30 (possible, if no digital re-design would be necessary)
 - April 27 (possible, still little time for digital re-design)
 - June 1 (too late...)
 - DHPT 1.2 available: July '16 (at the latest, constraint by module production)