Background estimation for searches for supersymmetry in the single lepton final state in 13 TeV pp collisions

David Handl

IMPRS Workshop, Max-Planck-Institute for Physics March 14th 2016

Supersymmetry (SUSY)

Symmetry between bosons and fermions

Supersymmetric particle is assigned to each particle in the SM Quantum numbers remain unchanged, **spin differs** by $\pm 1/2$

Chiral supermultiplet

- leptons and quarks have spin-0 super partners (sleptons and squarks)
- 2 chiral Higgs doublets are necessary, partners are the higgsinos

Vector supermultiplet

- SM gauge bosons have spin-1/2 superpartners, called gauginos
- charged (neutral) higgsinos, winos and binos can mix to charged (neutral) mass eigenstates, called charginos (neutralinos)

SUSY particle masses \neq SM particle masses \rightarrow **broken symmetry**

name	spin 0	spin $1/2$
squarks, quarks	$(ilde{u}_L \; ilde{d}_L)$	$(u_L \ d_L)$
$(\times 3 \text{ families})$	$ ilde{u}_R^*$	u^\dagger_R
	$ ilde{d}_R^*$	d_R^\dagger
sleptons, leptons	$(ilde{ u} ilde{e}_L)$	$(\nu \ e_L)$
$(\times 3 \text{ families})$	$ ilde{e}_R^*$	e_R^\dagger
Higgs, higgsinos	$(H_u^+ \ H_u^0)$	$(ilde{H}^+_u \ ilde{H}^0_u)$
	$(H^0_d \ H^d)$	$(ilde{H}^0_d \ ilde{H}^d)$

name	spin $1/2$	spin 1
gluino, gluon	${ ilde g}$	g
winos, W bosons	$ ilde W^\pm \ ilde W^0$	$W^{\pm} W^0$
binos, B bosons	$ ilde{B}^0$	B^0

Compact Muon Solenoid (CMS)

Search for SUSY in events with one electron or muon

- joint effort of data analysis groups from Athens, ٠ CERN, DESY Hamburg and HEPHY Vienna
- consider simplified models •
- separated by the number of bottom quarks
- search focuses on gluino pair production
- **First analysis** in **CMS** of $\tilde{g}\tilde{g} \rightarrow q\bar{q}q\bar{q}WW\tilde{\chi}^{0}\tilde{\chi}^{0}$ model •
- CMS results from 8 TeV data exclude gluino masses < 1.26 TeV [1]
- ATLAS performed searches for both models [2] on 8 TeV data
- masses up to 1.2 1.31 TeV are excluded

400

ATLAS

s = 8 TeV, L = 20 fb⁻¹

g-

600

 $m_{\widetilde{\chi}_i^0}$ [GeV]

1100

1000

800

700

600F

500E

400E

300Ē

200

100

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

Analysis strategy

• Vienna performed the SUSY search in **0b-jet channel**

- search focuses on gluino pair production and decay through chargino
 - large number of jets, n_{jets}
 - high hadronic activity, $H_T = \Sigma p_T(jets)$
 - high momentum imbalance, $L_T = p_T(lepton) + E_T^{miss}$
- search variable: azimuthal angle between W and lepton

- events with a genuine W→Iv decay have a maximum
- SUSY signal has a uniform distribution because of two neutralinos
- expected signal yields after event selection:

	$T5q^41/0.8/0.7$	$T5q^41.2/1.0/0.8$	$T5q^41.5/0.8/0.1$	All BKG
$\Delta \Phi > x$	18.3	9.2	2.9	44

- search performed on 2.1fb⁻¹ dataset recorded in 2015
- data was blinded during the completion of my thesis

Data-driven background estimation

Prediction of the tt+jets and W+jets background

QCD multijet background estimation

- estimated in the electron channel
- data-driven method based on L_P variable
- L_P reflects the W boson polarization
- invert the electron identification requirements
- no impact on LP distribution

- ratio of 'selected' to 'anti-selected' events in 3-4 jet, 0b-jets sideband
- Fsel-to-antisel almost independent of the jet multiplicity
- R_{CS} well below 1%
- QCD mulitjet background **negligible** in **signal regions**

Closure test

CMS Simulation

of Events

L=2.1fb⁻¹ (13 TeV)

combined EWK and QCD MC samples are used as a data template •

5j

 $L_T 2$

Η_τi

5

Η_τi

5j

 L_T3

H_ri

6-7j

 $L_T 1$

 $H_{T}1$

6-7j

 $L_T 1$

- closure test performed in the two sidebands and the high jet • multiplicity search regions
- good agreement between prediction and expectation •
- derived results are reliable •

Summary and conclusion

- First analysis in CMS, focussing on gluino pair production and decay through chargino
- data-driven methods to estimate tt+jets, W+jets and multijet backgrounds
- reliable results are obtained
- analysis was still under study
 - data in signal regions is concealed
 - comparison of the background prediction and data is omitted

David Handl | March 14th 2016

Thank you for your attention!

Acknowledgements

Prof. Jochen Schieck, Dr. Robert Schöfbeck (Supervisors)Dr. Wolfgang Adam (Group leader)& all members of the Institute

Motivation

Standard Model of particle physics (SM)

- matter is made of elementary particles, known as the fermions
- fermions have spin 1/2, separated into leptons and quarks
- three fundamental forces: electro-weak and strong nuclear force
- · interactions are mediated by the exchange of bosons
- the Higgs mechanism describes how particles acquire mass
- the discovery of the Higgs boson in 2012 completed the SM
- theoretical predictions are verified by various experiments

particle content of the SM

Open questions?

David Handl | March 14th 2016

Hierarchy problem

Hierarchy problem

- Particles that couple to the Higgs field induce large quantum corrections to the Higgs boson mass
- Quantum corrections are some orders larger than the mass of the Higgs boson itself

Supersymmetry can **solve** the **hierarchy problem** in an elegant way

 $Q |\text{Boson}\rangle = |\text{Fermion}\rangle$ $Q |\text{Fermion}\rangle = |\text{Boson}\rangle$

Fermionic operator Q must satisfy anti-commutation relations SUSY algebra extend usual space-time to super-space

Event selection

- exactly one electron or muon, $p_T > 25 \text{ GeV}$
- veto events with additional soft leptons ($p_T > 10 \text{ GeV}$)
- at least five jets $(p_T > 30 \text{ GeV})$
- two jets should have at least $p_T > 80 \text{ GeV}$
- no jet tagged as a bottom quark

$n_{ m jet}$	$L_{\rm T} \; [{\rm GeV}]$	$H_{\rm T} \; [{\rm GeV}]$	$\Delta \Phi(\mathrm{W},\ell)$
	$\left[250,350\right]$	≥ 500	1.0
5	$\left[350, 450\right]$	≥ 500	1.0
	≥ 450	≥ 500	1.0
	[250, 350]	[500, 750]	1.0
$[6,7] [350, 450] \\ \ge 450$		≥ 750	1.0
	$\left[350,450\right]$	[500, 750]	1.0
		≥ 750	1.0
	> 450	[500, 1000]	0.75
	<u>~ 400</u>	≥ 1000	0.75
≥ 8	[250, 250]	[500, 750]	1.0
	[230, 350]	≥ 750	1.0
	[350, 450]	≥ 500	0.75
	≥ 450	≥ 500	0.75

Background composition

Prediction of the tt+jets background (contd.)

- Rcs obtained in 1b-jet, 4-5 jet region
- small differences between 0b-jet and 1b-jet regions and possible contamination from other EWK sources are corrected by:

$$\kappa_{\rm b}^{\rm MC} = \frac{R_{\rm CS}^{\rm MC}(n_{\rm jet} \in [4, 5], 0\mathrm{b}, \mathrm{t\bar{t}} + \mathrm{jets})}{R_{\rm CS}^{\rm MC}(n_{\rm jet} \in [4, 5], 1\mathrm{b}, \mathrm{EWK})}$$

• expected number of tt+jets events in the signal region

 $N_{t\bar{t}+jets}^{pred.}(n_{jet}^{SR}, 0b, \Delta \Phi > \mathbf{x}) = \kappa_{b}^{MC} \cdot \mathbf{R}_{CS}^{data}(\mathbf{n}_{jet} \in [4, 5], 1b) \cdot \mathbf{y}_{t\bar{t}+jets}^{fit}(\mathbf{n}_{jet}^{SR}, 0b, \Delta \Phi < \mathbf{x})$

- the fraction of tt+jets in the low Δφ control region, y^{fit} is derived by a data/MC fit
- subtraction of QCD multijet background is considered in the fit method
- dependency of R_{CS} as a function of jet multiplicity is covered by a systematic uncertainty

	$n_{ m b-jet}=0$	$n_{ m b-jet}=1$
$n_{ m jet}=3$	Bkg. estimation of W+jets	
$n_{\rm jet} = 4$	and QCD multijets	Bkg estimation of $t\bar{t} \perp i$ ats
$n_{ m jet}=5$		Drg. estimation of $tt + jets$
$6 \ge n_{ m jet} \ge 7$	Search regions	
$n_{ m jet} \geq 8$		

Prediction of the W+jets background (contd.)

- Rcs obtained in **0b-jet, 3-4 jet region**
- R_{CS} is measured in the µ-channel to avoid significant
 QCD contribution
- ratio $R_{CS}(\mu)/R_{CS}(e+\mu)$ is assigned as an uncertainty
- expected number of W+jets events in the signal region

 $N_{W+jets}^{\text{pred.}}(n_{\text{jet}}^{\text{SR}}, 0\mathbf{b}, \Delta \Phi > \mathbf{x}) = \mathbf{R}_{\text{CS}}^{\text{corr.}}(\mathbf{n}_{\text{jet}} \in [3, 4], 0\mathbf{b}, \mu) \cdot \mathbf{y}_{W+\text{jets}}^{\text{fit}}(\mathbf{n}_{\text{jet}}^{\text{SR}}, 0\mathbf{b}, \Delta \Phi < \mathbf{x})$

- possible contribution from tt+jets is considered in R^{corr}CS
- dependency of R_{CS} as a function of jet multiplicity is covered by a systematic uncertainty

	$n_{ m b-jet}=0$	$n_{ m b-jet}=1$
$n_{ m jet}=3$	Bkg. estimation of W+jets	
$n_{ m jet}=4$	and QCD multijets	Bkg estimation of $t\bar{t} \pm iets$
$n_{ m jet}=5$		Drg. estimation of $tt + jets$
$6 \ge n_{\rm jet} \ge 7$	Search regions	
$n_{ m jet} \ge 8$		

b-tag multiplicity fit

determine fractions tt+jets/W+jets in low $\Delta \Phi$ control region

- binned likelihood fit in low $\Delta \Phi$ control region
- make W±+jets /tt+jets templates in b-jet multiplicity
- create constant QCD template from L_P-method
- set remaining EWK background as constant
- fit W[±]+jets /tt+jets templates to data

Electron identification inversion for the QCD background estimation

of Events

QCD multijet background estimation

- majority of electrons are misidentified jets and converted photons
- method is based on the LP variable:

$$L_{\mathrm{P}} = rac{p_{\mathrm{T}}(\ell)}{p_{\mathrm{T}}(\mathrm{W})} \cdot \cos(\Delta \Phi(\mathrm{W},\ell))$$

- reflects the W boson polarization
- well understood for events with a genuine W decay
- different L_P distribution for lepton candidates from QCD sample
- invert electron identification requirements
 - → dominated by fake electrons
 - → QCD enriched and EWK suppressed sample
- 2 orthogonal lepton criteria: 'selected' 'anti-selected'
- **no impact** on the L_P distribution

QCD multijet background estimation (contd.)

- perform a binned likelihood fit in the 0b-jet, 3-4 njet region
 - 'selected'-EWK template from simulation
 - 'anti-selected' data template
- fit result: expected number of multijet events in the low njet region
- derive a ratio of 'selected' to 'anti-selected' events

$$F_{\text{sel-to-anti}}(L_{\text{T}}, n_{\text{jet}} \in [3, 4]n_{\text{b-jet}} = 0) = \frac{N_{\text{QCD selected}}^{\text{fit}}(L_{\text{T}}, n_{\text{jet}} \in [3, 4]n_{\text{b-jet}} = 0)}{N_{\text{QCD anti-selected}}^{\text{data}}(L_{\text{T}}, n_{\text{jet}} \in [3, 4]n_{\text{b-jet}} = 0)}$$

- $F_{sel-to-antisel}$ is almost **independent** of n_{jet} multiplicity and H_T
- expected number of QCD events can be predicted:

$$N_{\text{QCD selected}}^{\text{pred.}}(L_{\text{T}}, H_{\text{T}}, n_{\text{jet}}) = F_{\text{sel-to-anti}} \cdot N_{\text{anti-selected}}^{\text{data}}(L_{\text{T}}, H_{\text{T}}, n_{\text{jet}})$$

QCD multijet background estimation

- perform a data/MC fit in the 0b-jet, 3-4 jet region
 - 'selected'-EWK template from simulation
 - 'anti-selected' data template
- fit result: expected number of multijet events in the sideband
- derive a ratio of 'selected' to 'anti-selected' events in sideband
- $F_{sel-to-antisel}$ is almost **independent** of n_{jet} multiplicity and H_T
- estimate the number of QCD events by scaling 'anti-selected' data with $F_{\mbox{sel-to-antisel}}$

QCD multijet background estimation

- estimation of multijet background over the full Δφ range
- subtraction of QCD background in 'R_{cs}-method' requires separation into low Δφ and high Δφ fractions
- Δφ distributions of 'selected' and 'anti-selected' samples agree
- · better statistics in the 'anti-selected' sample

- Rcs transfer factors measured in 'anti-selected' data
- Rcs transfer factors are stable and always below 1%
- contribution of multijet events in signal regions is negligible
- QCD background needs to be **subtracted** in the **control regions**

Muon identification inversion for the QCD background estimation

QCD multijet background estimation

muon channel

- very small contribution of multijet background in the µ-channel
- derive an upper limit
- method is similar to the electron channel, but relies more on properties from simulations
- 2 orthogonal lepton criteria are defined to derive Fsel-to-antisel
- very small Rcs transfer factors in 'anti-selected' sample
- low contamination of QCD background in full $\Delta \phi$ range

→ contribution of multijet events in **control** and **signal regions** is **negligible**

Systematic uncertainties

Systematic effects in the **multijet background**:

- $F_{\text{sel-to-antisel}}$ is independent of H_T and L_T
- conservative uncertainty of 25%-100% is assigned

Systematic uncertainties of the background estimation:

- b-jet scale factor uncertainty
- Jet energy and E_T^{miss} uncertainty
- Lepton identification and reconstruction efficiency
- Fraction of dilepton events
- Pileup
- Uncertainty on the QCD multijet prediction
- W+jet cross-section uncertainty
- W polarization
 - W+jets varied ±10%, tt+jets varied ±5%
 - $w = (1 \pm (0.1 \text{ or } 0.05) \cdot (1 \cos(\theta^*))^2) \cdot \mathbf{x}^{\pm 1}$
- tt+jets cross-section uncertainty
- Top-quark p_T reweighting

Simulated samples

Sample name	cross section [pb]
TTJets_LO_25ns	831.76
$TTJets_SingleLeptonFromT$	269.49
$TTJets_SingleLeptonFromTbar$	269.49
TTJets_DiLepton	87.315
TTJets_HT600to800	2.665
TTJets_HT800to1200	1.097
$TTJets_HT1200to2500$	0.199
$TTJets_HT2500toInf$	0.002
${ m TToLeptons_tch}$	70.314
$TToLeptons_sch$	3.681
$TBar_tWch$	35.6
T_tWch	35.6
$DYJetsToLL_M50_HT100to200$	177.038
$DYJetsToLL_M50_HT200to400$	54.293
$DYJetsToLL_M50_HT400to600$	6.981
$DYJetsToLL_M50_HT600toInf$	2.807
$TTZToLLNuNu_{25ns}$	0.2529
$\mathrm{TTZToQQ_25ns}$	0.5297
$TTWJetsToLNu_{25ns}$	0.2043
$\mathrm{TTWJetsToQQ_25ns}$	0.4062
$WJetsToLNu_HT100to200$	1656.81
$WJetsToLNu_HT200to400$	442.8
$WJetsToLNu_HT400to600$	60.147
$WJetsToLNu_HT600toInf$	23.087
$WJetsToLNu_HT600to800$	15.744
$WJetsToLNu_HT800to1200$	6.47
$WJetsToLNu_HT1200 to 2500$	1.636
$WJetsToLNu_HT2500toInf$	0.038
QCD_HT100to200	27540000
$QCD_HT200to300$	1735000
$QCD_HT300to500$	366800
$QCD_HT500to700$	29370
QCD_HT700to1000	6524
QCD_HT1000to1500	1064
QCD_HT1500 to2000	121.5
QCD_HT2000toInf	25.42

Sample name	cross section [pb]
$T5q^41/0.8/0.7$	0.325
$T5q^41.2/1/0.8$	0.086
$T5q^41.5/0.8/0.1$	0.014

simulated SUSY signal samples

simulated SM background samples