A low-energy muonium source in superfluid helium

Ludovic Scyboz

Eidgenössische Technische Hochschule Zürich

scybozl@phys.ethz.ch

March 14 $^{\rm th}$, 2016

Muonium

- What is muonium?
- Motivation
- Muonium production

2 Test cell for production in He-II

- Differential pumping
- Cryogenic tests

3 Conclusion

- Muonium (Mu) is a hydrogen-like bound state of an antimuon μ^+ and an electron e^-
- Purely leptonic
- Lifetime of 2.2 μs due to antimuon decay
- Experimentally confirmed in 1960¹

¹[Hughes]

Motivation

1S hyperfine splitting

$$\Delta
u_{HFS} = rac{16}{3} (Z lpha)^2 R_\infty rac{\mu_\mu}{\mu_B} \left[1 + rac{m_e}{m_\mu}
ight]^{-3} (1 + \epsilon_{QED} + \epsilon_{
m rec}) + \Delta
u_{
m weak} + \Delta
u_{
m strong} + \Delta
u_{
m new}$$

Note!²

• $\delta \left(\Delta \nu_{HFS}^{exp}(H) \right) \sim 10^{-12}$ • $\delta \left(\Delta \nu_{HFS}^{th}(H) \right) \sim 10^{-6}$ • $\delta \left(\Delta \nu_{HFS}^{exp}(Mu) \right) \sim 10^{-8}$ • $\delta \left(\Delta \nu_{HFS}^{th}(Mu) \right) \sim 10^{-8}$

²[Hill, Taylor, Crampton]

various contributions to the energy it			
Contribution	Hydrogen-like electronic atom	Positronium	Hydrogen-like muonic atom
Schrödinger contributions			
• With $M = \infty$	1	1	1
• With $m_{\rm R}$ (correction)	m/M	1	m/M
Relativistic corrections	2	2	2
 Dirac equation 	$(Z\alpha)^2$	α^2	$(Z\alpha)^2$
 Two-body effects 	$(Z\alpha)^2 m/M$	α^2	$(Z\alpha)^2 m/M$
Quantum electrodynamics			
 Self-energy 	$\alpha(Z\alpha)^2 \ln(Z\alpha)$	$\alpha^3 \ln \alpha$	$\alpha(Z\alpha)^2 \ln(Z\alpha)$
 Radiative width 	$\alpha(Z\alpha)^2$	α ³	$\alpha(Z\alpha)^2$
 Vacuum polarization 	$\alpha(Z\alpha)^2$	α^3	$\alpha \ln(Z\alpha m/m_c)$
 Annihilation 			() ()
- Virtual		α^2	_
- Real	_	α^3	
Nuclear effects			
 Magnetic moment (HFS) 	$(Z\alpha)^2 m/M$	α^2	$(Z\alpha)^2 m/M$
	or $\alpha(Z\alpha)m/m_{\rm p}$		or $\alpha(Z\alpha)m/m_{\rm p}$
 Charge distribution 	$(Z\alpha mcR_N/\hbar)^2$	_	$(Z\alpha mcR_N/\hbar)^2$

Table 1 Various contributions to the energy levels

The results are in units of $(Z\alpha)^2 mc^2$, where *m* is the mass of the orbiting particle. Here: *M* is the nuclear mass and m_p is the proton mass which enters equations if one measures the nuclear magnetic moment in units of the nuclear magnetor. A contribution of the nuclear magnetic moment, i.e., the hyperfine structure, appears if the nuclear spin is not zero. *R*_N stands for the nuclear (charge) radius.

Figure : Corrections to the energy levels obtained from Schrödinger

(日) (同) (三) (三)

- \bullet Usually by stopping μ^+ in noble gases (He, Ar, ...)
- \bullet Free Mu extracted after implanting μ^+ in ${\rm SiO_2}$ powders or thin porous films^3
- **Superfluid helium**: Mu production below 0.5 K, emission into vacuum with quasi-monoenergetic velocity

μ^+ implantation in He-II

Figure : Sketch of a setup for muonium production in He-II

Ludovic Scyboz (ETHZ)

March 14th, 2016 8 / 19

Design of a test cell

Figure : Test cell with copper container and indium-sealed steel flange.

Sealing of 50 nm-thick silicon nitride windows

Figure : Indium-foil sealed, 5 x 5 $\ {\rm mm}^2$ silicon nitride window for future antimuon implantation.

Differential pumping

Figure : Custom-made cold valve (brass) with its needle (steel) to allow for differential pumping.

Differential pumping: test pipe

Figure : Test pipe with gauge sensors and dosing valves.

Differential pumping: results

Ludovic Scyboz (ETHZ)

Muonium in He-II

March 14th, 2016 13 / 19

- Cell is tested at cryogenic temperatures for leaks and mechanical failure of the silicon nitride window
- Cryogen-free, laboratory cryostat based on a pulse-tube cryocooler
- Down to 7.3 K currently (cell temperature)

Figure : Laboratory cryostat.

Cryogenic tests II

Figure : Test cell attached to the cryostat's second stage.

Cryogenic tests III

Figure : Test cell with intact window after cooldown.

- Mu is interesting as a tool for testing predictions from the Standard Model, or give better results on BSM constraints.
- It is imperative to extract it into vacuum for clean laser-spectroscopic measurements.
- The embedding of a 50 nm-thick silicon nitride window for antimuon implantation should be feasible, if used along with a differential pumping mechanism and careful sealing.

References

Vernon W. Hughes, Douglas W. McColm, Klaus Ziock, and Richard Prepost (1960, 1970)

Muonium Formation and Larmor Precession *Phys. Rev. A* 1(3), 595 – 612.

Richard J. Hill (2001) New Value of m_{μ} / m_e from Muonium Hyperfine Splitting Phys. Rev. Lett. 86(15), 3276 – 3279.

B. N. Taylor, W. H. Parker, and D. N. Langenberg(1969) Determination of $\frac{e}{h}$, Using Macroscopic Quantum Phase Coherence in Superconductors

Rev. Mod. Phys. 41(3), 375 – 496.

Stuart B. Crampton, Daniel Kleppner, and Norman F. Ramsey (1963) Hyperfine Separation of Ground-State Atomic Hydrogen *Phys. Rev. Lett.* 11(7), 338 – 340.

Aldo Antognini, Paolo Crivelli, Klaus Kirch, Florian Piegsa et al. (2012) Muonium Emission into Vacuum from Mesoporous Thin Films at Cryogenic Temperatures

Thank you for your attention

