HOW MANY NEW PARTICLES DO WE NEED AFTER THE HIGGS BOSON?

Marco Drewes TU München

12. 7. 2016 Werner Heisenberg Institut, Munich

The **Standard Model** and **General Relativity** together explain *almost* all phenomena observed in nature, but...

- gravity is not quantised
- a handful of observations remain unexplained
 - neutrino oscillations
 - baryon asymmetry of the universe
 - dark matter
 - accelerated cosmic expansion

The **Standard Model** and **General Relativity** together explain *almost* all phenomena observed in nature, but...

- gravity is not quantised
- a handful of observations remain unexplained
 - neutrino oscillations the only signal found in the lab!
 - baryon asymmetry of the universe
 - dark matter
 - accelerated cosmic expansion

The **Standard Model** and **General Relativity** together explain *almost* all phenomena observed in nature, but...

- gravity is not quantised
- a handful of observations remain unexplained
 - neutrino oscillations the only signal found in the lab!
 - baryon asymmetry of the universe leptogenesis?
 - dark matter sterile neutrinos?
 - accelerated cosmic expansion (Higgs inflation + Cosmological Constant?)

Leptogenesis

Dark Matter

Summary

Neutrino masses: Seesaw mechanism

$$\mathcal{L} = \mathcal{L}_{SM} + i\bar{\nu}_R \partial \!\!\!/ \nu_R - \bar{L}_L F \nu_R \tilde{H} - \bar{\nu}_R F^{\dagger} L \tilde{H}^{\dagger} - \frac{1}{2} (\bar{\nu^c}_R M_M \nu_R + \bar{\nu}_R M_M^{\dagger} \nu_R^c)$$

Minkowski 1979, Gell-Mann/Ramond/Slansky 1979, Mohapatra/Senjanovic 1979, Yanagida 1980, Schechter/Valle 1980

$$\Rightarrow \frac{1}{2} (\overline{\nu_L} \, \overline{\nu_R^c}) \left(\begin{array}{cc} 0 & m_D \\ m_D^T & M_M \end{array} \right) \left(\begin{array}{c} \nu_L^c \\ \nu_R \end{array} \right)$$

two sets of Majorana mass states with mixing $\theta = m_D M_M^{-1} = v F M_M^{-1}$

Neutrino masses: Seesaw mechanism

$$\mathcal{L} = \mathcal{L}_{SM} + i\bar{\nu}_R \partial \!\!\!/ \nu_R - \bar{L}_L F \nu_R \tilde{H} - \bar{\nu}_R F^{\dagger} L \tilde{H}^{\dagger} - \frac{1}{2} (\bar{\nu^c}_R M_M \nu_R + \bar{\nu}_R M_M^{\dagger} \nu_R^c)$$

Minkowski 1979, Gell-Mann/Ramond/Slansky 1979, Mohapatra/Senjanovic 1979, Yanagida 1980, Schechter/Valle 1980

$$\Rightarrow \frac{1}{2} (\overline{\nu_L} \ \overline{\nu_R^c}) \left(\begin{array}{cc} 0 & m_D \\ m_D^T & M_M \end{array}\right) \left(\begin{array}{c} \nu_L^c \\ \nu_R \end{array}\right)$$

two sets of Majorana mass states with mixing $\theta = m_D M_M^{-1} = v F M_M^{-1}$

- three light neutrinos $v \simeq U_{\nu}(\nu_L + \theta \nu_R^c)$
 - mostly "active" SU(2) doublet
 - light masses $m_{\nu} \simeq \theta M_M \theta^T = v^2 F M_M^{-1} F^T$
- three heavy neutrinos $N \simeq \nu_R + \theta^T \nu_L^c$
 - mostly "sterile" singlets
 - heavy masses *M_N* ~ *M_M*
- Majorana masses *M_M* introduce new mass scale(s)
- new heavy states only interact via small mixing $\theta \ll 1$

Where to see the N_l ?

see e.g. MaD arXiv:1303.6912 [hep-ph]

• Indirect searches see e.g. MaD/Garbrecht 1502.00477

• Direct searches see e.g. Antusch/Fischer 1502.05915

- Cosmology: BBN and N_{eff} see e.g. Hernandez/Kekic/Lopez-Pavon 1406.2961
- Astrophysics: X-ray, SN, pulsars, structure formation review 1602.04816

Where to see the N_l?

see e.g. MaD arXiv:1303.6912 [hep-ph]

- Indirect searches see e.g. MaD/Garbrecht 1502.00477
 - neutrino oscillation data
 - LFV in rare lepton decays
 - violation of lepton universality,
 - (apparent) violation of CKM unitarity
 - neutrinoless double β-decay
 - EW precision data
- Direct searches see e.g. Antusch/Fischer 1502.05915

- Cosmology: BBN and N_{eff} see e.g. Hernandez/Kekic/Lopez-Pavon 1406.2961
- Astrophysics: X-ray, SN, pulsars, structure formation review 1602.04816

Where to see the N_l?

see e.g. MaD arXiv:1303.6912 [hep-ph]

- Indirect searches see e.g. MaD/Garbrecht 1502.00477
 - neutrino oscillation data
 - LFV in rare lepton decays
 - violation of lepton universality,
 - (apparent) violation of CKM unitarity
 - neutrinoless double β-decay
 - EW precision data
- Direct searches see e.g. Antusch/Fischer 1502.05915
 - LNV and LFV in gauge boson or meson decays

- displaced vertices, SHiP
- peak searches, missing 4-momentum
- Cosmology: BBN and N_{eff} see e.g. Hernandez/Kekic/Lopez-Pavon 1406.2961
- Astrophysics: X-ray, SN, pulsars, structure formation review 1602.04816

Bounds from colliders

Plot from arXiv:1504.04855 [hep-ph]

Leptogenesis

Dark Matter

Summary

The SHiP experiment

arXiv:1504.04956 [physics.ins-det]

Dark Matter

Summary

10/27

Neutrinoless Double β Decay and Leptogenesis

plot from MaD/Eijima 1606.06221

see also Lopez-Lavon/Pascoli/Wong 1209.5342, Lopez-Pavon/Molinaro/Pectov 1506.05296

How many new particles do we need after the Higgs boson?

Bounds from cosmology: *N*_{eff} and BBN

Minimal seesaw model: If one RH neutrino is DM, then $m_{\text{lightest}} < 10^{-3}$ eV!

MaD/Garbrecht 1502.00477

How many new particles do we need after the Higgs boson?

So far we only asked the N_l to explain neutrino masses...

Given all these bounds, can they simultaneously explain the observed DM and the baryon asymmetry of the Universe (BAU)?

And which additional constraints would that imply?

 \Rightarrow The Neutrino Minimal Standard Model (ν MSM) Asaka/Shaposhnikov 2005

Seesaw Partners N₂ and N₃

- have quasi-degenerate GeV masses $M_{2,3} = M \pm \delta M$
- couple strongly enough to be produced thermally in the early universe
- have decayed before BBN
- can be seen at colliders
- are responsible for lepton/baryon asymmetries
- generate active neutrino masses via seesaw mechanism

Dark Matter candidate N₁

- has a keV mass M₁
- never reach thermal equilibrium in the early universe due to small coupling
- are present today as dark matter
- cannot be seen in colliders, but in X-ray observatories (DM decays)
- require a resonant production mechanism to be DM
- effect on neutrino masses negligible

Leptogenesis: Sakharov conditions

baryon number violation

C and CP violation

nonequilibrium

Leptogenesis: Sakharov conditions

- baryon number violation
 - SM: sphalerons violate *B*, but conserve *B L* at *T* > 140 GeV
- C and CP violation
 - SM: weak interaction violates P and CP, but CP-violation insufficient
- nonequilibrium
 - SM: Hubble expansion unsufficient, no EW phase transition

Leptogenesis: Sakharov conditions

- baryon number violation
 - SM: sphalerons violate *B*, but conserve B L at T > 140 GeV
 - Yukawa couplings F violate individual lepton flavour numbers
 - in addition *M_M* violates total lepton number
- C and CP violation
 - SM: weak interaction violates P and CP, but CP-violation insufficient
- nonequilibrium
 - SM: Hubble expansion unsufficient, no EW phase transition

Leptogenesis: Sakharov conditions

- baryon number violation
 - SM: sphalerons violate *B*, but conserve B L at T > 140 GeV
 - Yukawa couplings F violate individual lepton flavour numbers
 - in addition *M_M* violates total lepton number
- C and CP violation
 - SM: weak interaction violates P and CP, but CP-violation insufficient
 - additional complex phases in F violate CP
- nonequilibrium
 - SM: Hubble expansion unsufficient, no EW phase transition

Leptogenesis: Sakharov conditions

- baryon number violation
 - SM: sphalerons violate *B*, but conserve *B L* at *T* > 140 GeV
 - Yukawa couplings F violate individual lepton flavour numbers
 - in addition *M_M* violates total lepton number
- C and CP violation
 - SM: weak interaction violates P and CP, but CP-violation insufficient
 - additional complex phases in F violate CP
- nonequilibrium
 - SM: Hubble expansion unsufficient, no EW phase transition
 - *N_l* production ("freeze in leptogenesis")

Akhmedov/Rubakov/Smirnov

 N_l freezeout and decay ("freeze out leptogenesis")

Fukugita/Yanagida

Leptogenesis

16/27

Vanilla Leptogenesis (freeze out)

If N_l are superheavy $M_l \gg$ TeV, then

- N_l are produced thermally very early at $T > M_l$
- freeze out and decay at $T \lesssim M_I$
- CP-violating decay produces $L \neq 0$

- $L \neq 0$ is partly transferred into $B \neq 0$ by sphalerons
- requires M_I > 10⁸ GeV Davidson/Ibarra
 ...but may still be ruled out? Deppisch/Harz/Hirsch/Päs 1503.04825
- can work with M_I > TeV with mass degeneracy ("resonant leptogenesis") Pilaftsis/Underwood

Leptogenesis from *N*-oscillations (freeze-in)

Oscillating regime

(Leptogenesis)

17/27

Leptogenesis from N-oscillations (freeze-in)

Overdamped regime

Leptogenesis with two heavy neutrinos

plot from MaD/Garbrecht/Gueter/Klaric 1606.06690

see also Canetti/MaD/Frossard/Shaposhnikov 1208.4607, Hernandez/Kekic/Lopez-Pavon/Salvado 1606.06719 and

Abada/Arcadi/Domcke/Lucente 1507.06215

Requires mass degeneracy and small mixing...

... but CP-violation may also be measurable Cvetic/Kim/Zamora-Saa 1403.2555

Sterile Neutrino Dark Matter

• Where is the decay line? Very active discussion of 3.5 keV excess...

- How were they produced?
- Are they consistent with structure formation?

Sterile Neutrino Dark Matter

- Where is the decay line? Very active discussion of 3.5 keV excess...
 - radiative decay $N \rightarrow \nu_L \gamma$
 - Search for X-ray line!

- How were they produced?
- Are they consistent with structure formation?

Sterile Neutrino Dark Matter

- Where is the decay line? Very active discussion of 3.5 keV excess...
 - radiative decay $N \rightarrow \nu_L \gamma$
 - Search for X-ray line!

- How were they produced?
- Are they consistent with structure formation?
 - DM is absolutely essential to form structures in the universe
 - DM is "cold", i.e. $\langle \mathbf{k} \rangle < M$ at freezeout

104.2929

How to make sterile neutrino DM?

• Thermal production via their mixing θ

- happens unavoidably for $\theta \neq 0$ Dodelson/Widrow
- never reach equilibrium for realistic θ ("freeze in DM", "FIMP DM") \Rightarrow non-thermal spectrum!
- can be resonantly enhanced by MSW effect Shi/Fuller

[This is realised in the ν MSM]

• Non-thermal production in the decay of heavy particles

- inflaton or other scalar
- can occur when scalar is in equilibrium or during scalar production ("freeze in") Merle/Totzauer 1502.01011
- scatterings can also contribute MaD/Kang 1510.05646

[I will not talk about this. Alex really is the person to ask]

• Thermal production via (gauge) interactions at high energies [I won't talk about this]

Dark Matter

Summary

Quantum mechanical picture

$$\begin{aligned} |\nu_{\alpha}\rangle &= \cos\theta_{m}(t) |\nu_{1}(t)\rangle + \sin\theta_{m}(t) |\nu_{2}(t)\rangle, \\ |\nu_{s}\rangle &= -\sin\theta_{m}(t) |\nu_{1}(t)\rangle + \cos\theta_{m}(t) |\nu_{2}(t)\rangle, \end{aligned}$$

Effective mixing leads to both, coherent oscillations and decoherent scatterings .

With $\Delta(p) = \Delta m^2/(2p)$ one finds: $\sin^2(2\theta_m) = \frac{\Delta^2(p)\sin^2(2\theta)}{\Delta^2(p)\sin^2(2\theta) + [\Delta(p)\cos(2\theta) - V_D - V_T]^2},$

Heavy neutrino production rate $\Gamma_N \sim \theta_m^2 \Gamma_{\nu}$

$$\sin^2(2 heta_m) = rac{\Delta^2(p)\sin^2(2 heta)}{\Delta^2(p)\sin^2(2 heta) + \left[\Delta(p)\cos(2 heta) - V_D - V_T
ight]^2},$$

 $V_T \simeq -G_F^2 \rho T^4$ suppresses Γ_N/T at large TAt low T, vacuum term dominates \Rightarrow maximum around $T \sim 0.1 - 1$ GeV _{Dodelson/Widrow}

 V_D can give MSW resonance at $\Delta m^2 \cos(2\theta) = 2p(V_D + V_T)$ \Rightarrow enhanced DM abundance and complicated non-thermal spectrum! Shi/Fuller Leptogenesis

Dark Matter

Summary

Dispersion relation and MSW resonance

\Rightarrow requires lepton asymmetries that are much larger than baryon asymmetry!

This can be achieved in the decay of heavier sterile neutrinos

Canetti/MaD/Frossard/Shaposhnikov 1208.4607

But it is rather complicated to get it quantitatively right:

- change of g_* during QCD crossover
- hadronic corrections to neutrino propagators
- back-reaction due to depletion of asymmetries

Two groups have recently made impressive progress

Venumadhav/Cyr-Racine/Abazajian/Hirata 1507.06655, Ghiglieri/Laine 1506.06752

- non-thermal spectra tend to be "colder"
- bounds on DM mass from structure formation usually assume a thermal spectrum or quote a bound on the "effective thermal mass", e.g. M > 3.3 keV viel/Becker/Bolton/Haehnelt 1306.2314
- conversion of these into a bound on the physical DM-mass is non-trivial e.g. Schneider 1601.07553

HOW MANY NEW PARTICLES DO WE NEED AFTER THE HIGGS BOSON?

25/27

appear in updated version of 1602.04816

How many new particles do we need after the Higgs boson?

Three.

How many new particles do we need after the Higgs boson?

Three.

Frustra fit per plura quod potest fieri per pauciora.

[It is futile to do with more things that which can be done with fewer]

William of Ockham, Summa Totius Logicae

