

Belle II and the SuperKEKB Project Mission for New Physics

Christian Kiesling MPI für Physik and LMU München

p source

depleted n-Si bulk

- A bit of Physics Motivation ...
- Milestones from the B-Factories
- Why go beyond ?
- SuperKEKB and Belle II

Today's Standard Model

The Way to the Standard Model

DEPFET "Finding" the Top and the Higgs: Quantum Loops LEP: 1990's % $M_W^2 = \frac{\pi\alpha}{G_F \sqrt{2} \sin^2 \theta_W (1 - \Delta r)}$ $\Delta r = \Delta r(had) + \Delta r(top) + \Delta r(Higgs)$ "known" from loop corrections L.E.measurements $\Delta r(\text{top}) = \frac{3G_F}{8\sqrt{2}\tan^2\theta} m_t^2$ Small, but very sensitive to the top mass

$$\Delta r(\text{Higgs}) = \frac{3G_F m_W^2}{8\sqrt{2}\pi^2} \left(\ln \frac{m_H^2}{m_Z^2} - \frac{5}{6} \right)$$

Small, logarithmic sensitivity, but "measurable" when the top mass is known precisely

Major Discoveries in Weak Interactions of Quarks

T.D. Lee

J. Cronin

C.N. Yang

V. Fitch

M. Kobayashi T. Maskawa

P violated maximally in weak interactions

1957

400F

0.5

-0.5

-7.5

-5 -2.5 0 2.5

-ξ,∆t(ps)

Asymmetry

 $B^0 \rightarrow J/\psi K^0$

Small CP violation in neutral K system

O(1) CP

violation

generations

of quarks

and 3

5

7.5

1980

2008

Fundamental Discrete Symmetries

Charge Conjugation C:

Time reversal T:

CPT: conserved in all quantum theories exhibiting Lorentz-invariance

Example for Flavor Oscillations in the K-System

Cronin and Fitch observe manifest CP violation:

$$K_{\rm L} \to \pi^+\pi^-$$

The Origin of CP Violation in the SM

$$egin{pmatrix} d' \ s' \ b' \end{pmatrix} = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix} egin{pmatrix} d \ s \ b \end{pmatrix}$$

 $K^{-} \underbrace{\int_{\overline{u}}^{s} \sin \theta_{C}}^{s} \mu_{\mu}$ $\pi^{-} \underbrace{\int_{\overline{u}}^{d} \cos \theta_{C}}_{\overline{u}} \mu^{-}$ $\overline{\nu}_{\mu}$

"flavor"

M atrix V: unitary "mass"

CP violation from Quark Mixing: Extension of the Cabibbo-Matrix! $\begin{array}{l} d' \approx \ d\cos\theta_{_{C}} + s\sin\theta_{_{C}} \\ s' \approx -d\sin\theta_{_{C}} + s\cos\theta_{_{C}} \end{array}$

Mathematical reason: Matrix must have complex elements to violate CP: only possible via n x n matrix with n > 2

Theory formulated in 1973 by Kobayashi & Maskawa (Charm-, Bottom- and Top-Quark were not discovered yet!)

b-quark experiments have established the theory of K&M !

CKM Matrix and the Unitarity Triangle(s)

Beam energies are asymmetric: both B's have the same Lorentz boost, fly parallel in the lab system

large background ("continuum") below the resonance peak

Asymmetric beam energies: translate decay time to decay length

need excellent vertex detection

What are the Observables?

Time-Dependent CP-Asymmetries

Measurement of ϕ_1 (β) in Charmonium K⁰ modes

Puzzle: Comparison Tree and Penguins for ϕ_1 (β)

The Unitarity Triangle in 2012

Generally consistent with SM, some "tensions" exist ...

The Standard Model $SU_3 \times SU_2 \times U_1$ (SM) describes all data so far yet: cannot be the correct theory, SM only a "low energy" approximation

Evidence for Physics beyond the Standard Model:

- Dark Matter exists (only 4% of the Universe accounted for by SM)
- Neutrinos have mass (Dirac, Majorana?)
- Baryon Asymmetry in the Universe is much too large (by 10 orders of magnitude)

need very high energy (LHC) or **very high precision** (e.g. LHCb, SuperKEKB

At least two of them have to do with CP Violation

 $\mathcal{C} \dot{\mathcal{P}}$: One of the so-called Sakharov-conditions

New Physics Observables

Standard Model: all 5 measurements must give consistency with the triangle

If triangle "does not close"

New Physics

unexpectedly"large" branching fractions

NP in CPV asymmetries:

$$B \to J/\psi K_{_S} \longleftrightarrow B \to \phi K_{_S}$$

Principle:

Deviation of observable from the SM prediction signals NP

virtual particles in the loop reveal their existence

Rare Decays of *B* mesons:

SM pred.

leptons:

$$\begin{aligned} \tau &\to \mu \gamma \\ \tau &\to \mu \mu \mu \\ \tau &\to \mu \eta \end{aligned}$$

NP could make these decays possible

need precision (statistics) to challenge the SM

SuperKEKB and Belle-II The Precision Frontier

Belle-II Collaboration founded in Dec. 2008 now about 600 members from 99 institutions and 23 countries strong European participation: Austria, Germany, Czech Republic, Poland, Spain, Slovenia, (mainly in Pixel Vertex Detector, Si Strip Detector)

Strategies for High Luminosity

basic formula for the (instantaneous) luminosity

Accelerator physicists usually like this one better:

SuperKEKB: Nano Beam

New superconducting /permanent final focusing quads near the IP

> Colliding bunches

e⁺ 4GeV 3.6 A e⁻ 7GeV 2.6 A

Replace short dipoles with longer ones (LER)

╞╞╎╻╓╓┍┍╎╎╻┍ ╞╞╎╷╓╓┍┍╹

Redesign the lattices of HER & LER to squeeze the emittance

TiN-coated beam pipe with antechambers

SuperKEKB Target: L = 8x10³⁵/cm²/s

Add / modify RF systems for higher beam current

New IR

Positron source New positron target / capture section

Damping ring

Low emittance positrons to inject

Low emittance gun Low emittance electrons to inject

The Belle II Detector

- 2 layer Si pixel detector (DEPFET technology)
 (R = 1.4, 2.2 cm) monolithic sensor
 thickness 75 µm (!), pixel size ~50 x 50 µm²
- 4 layer Si strip detector (DSSD) , "SVD"
 (R = 3.8, 8.0, 11.5, 14.0 cm)

PXD – System Layout

Chip on Sensor: The Origami Concept (SVD)

DEPFET

An Event in the Silicon Tracking System (Belle)

DEPFET

	Belle	Belle-II
Radius of inner boundary (mm)	77	160
Radius of outer boundary (mm)	880	1096
Radius of inner most sense wire (mm)	88	168
Radius of outer most sense wire (mm)	863	1082
Number of layers	50	58
Number of total sense wires	8400	15104
Effective radius of dE/dx measurement (mm)	752	928
Gas	He-C ₂ H ₆	He-C ₂ H ₆
Diameter of sense wire (µm)	30	30

normal cell: 13.3 x 16 mm²

z-coordinate via standard stereo wire arrangement in 9 superlayers: A U A V A U A V A

Design for Barrel PID (TOP)

DEPFET

Ring imaging with :

- One coordinate with a few mm precision
- Time-of-arrival
- → Excellent time resolution < ~40ps required for single photon in 1.5T B field

C. Kiesling, 20th International Workshop on DEPFET Detectors and Applications, , May 11-14, 2016

- Increase of dark current due to neutron flux
- Fake clusters & pile-up noise

Barrel: 500 ns shaping + 2MHz w.f. sampling.

Endcap:

rad. hard crystals with short decay time (e.g. pure CsI) + photopentodes

30ns shaping + 43MHz w.f. sampling

Pileup Reduction:

BWD

25

20

bacground (rel. units)

- Standard detection technique: RPCs
- New: Two independent (x and y) layers in one superlayer made of orthogonal scintillator strips with WLS read out
- Photo-detector: avalanche photodiode in Geiger mode (SiPM)

Neural z-Vertex Trigger Project: better efficiency for low track multiplicities (developed within the Excellence Cluster: S. Neuhaus, S. Skambraks, Y. Chen)

The Background Problem:

Schedule and Milestones

Updated SuperKEKB Luminosity Profile

Super Flavor Factories:

Indirect discovery of New Physics In quantum loops via high precision measurements, searching for deviations from the SM

complementary to the LHC

- "New Physics" needed to explain the observed matterantimatter asymmetry —> new sources of CP violation
- Present measurements of the fundamental parameters of the CKM matrix show some "tensions"
- A new generation of B factories with O(50) times the present luminosity under constuction to search for NP, complementary to the LHC
- The SuperKEKB project is well underway, Phase 1 has started Belle II: Strong contribution from Europe (pixel vertex detector)
- Plan to have machine and detector ready for data taking in late 2018
- Excellent prospects for high precision flavor physics (SM & NP, exotic hadrons, physics) during this decade