

Gated Mode Testing with PXD9 Pilot

20th International Workshop on DEPFET Detectors and Applications Kloster Seeon, May 13th 2016

L. Andricek, C. Koffmane, F. Müller, E. Prinker for the Testing Crew

DEPFET shutter at SuperKEKB

- » continuous injection → ~ 400 revolutions with two noisy bunches (100ns apart) every 20 ms
- » DEPFET integrates two trains, these noisy bunches would blank the frames → 20% loss of data
- » the best solution: gate the DEPFET during the passage of the noisy bunches
- » ~100ns gate, with some rise and fall times, twice per frame → $2x2\mu$ s of 20 µs blind
- » assuming 4 ms relaxation time (not clear), ~200 consecutive frames with gate cycles
- » DEPFET operation mode during gating: DEPFET off, Clear active (Vgs=3 .. 5V, Vclear=16 .. 20V)

DEPFET gated operation mode

Switching to gated mode:

» DHE receives signal from acc., sends "veto" → DHPT switches to gated sequence → controls Switcher » DCD operation mode remains untouched

Normal charge collection

- » Vgs=4V, Vclear=5V
- » all signal charge collected in internal gate

Gated mode

- » Vgs=4V, Vclear=20V
- » all signal charge dumped to Clear

Challenge: switch all *Clear* contacts in the matrix from $\sim 5V \rightarrow \sim 20V$ shown on small matrix, but as expected, it's more difficult on the pilot modules

Two main aspects of the gated mode

\triangleright Fast switching of the clear signal (5V \rightarrow 20V)

- \rightarrow 26nF of the entire matrix \rightarrow 135pF for one SWB channel (~4nF for one SWB)
- \mapsto To reduce peak current
 - Switch in groups: each SWB has **4 groups**, switched on and off consecutively
- → Provide current by local capacitors: each SWB has 100nF SMDs placed on the balcony

▷ Analogue part of the DCD gets "upset" during gated mode

- → Capacitive coupling between Clear and Drain lines (input of the DCD)
- → Voltage drop on supply due to high transient currents

PXD9 - GatedMode - OB/IF

Voltage Scan: SCP – Signal Charge Preservation

Signal Charge Preservation: Laser Spot Dispersion @ Cleargate1 -0.5V

DCD analog CM off

DCD analog CM off

Data compromised for about 2 µs for 500ns gate, in principle okay, but ...

Direct measurement of the Clear pulse

Two reasons for this identified

- 1. voltage drop along Vsub line on the balcony (SWB) causes worse behaviour of output driver of last SWB
- 2. poor quality of the decoupling caps on the balcony

□ V_sub net has to support higher current as expected from SWB docu (1.4 mA instead of 0.1 mA)

- □ change line width to minimize voltage drop
- \square Currently 14µm at EOS in metal2 and 14µm at balcony in metal1
- Modifications
 - ► @ EOS in metal2 to 70µm width
 - ► @ balcony additional Cu line in parallel to metal 1 line

□ 10x reduction of line resistance → improved SWB performance, less degradation along switcher chain

Changes done for PXD9-7

Decoupling caps on balcony

- $\,\triangleright\,$ 100nF, 20V, X5R ceramic, standard SMD 0402
 - → Capacitance highly dependant on DC bias voltage and frequency
 - → Effectively a few tens of nF at 20V instead of 100nF as expected
 - → There are no better ceramic capacitors with this values and with this size on the market!!
- ▷ New, high-end silicon capacitors (~50x more expensive!!)
 - → Makes use of novel 3D via technology (IPDiA, France)
 - → 47nF/30V, and 100nF/11V, all SMD 0402
 - \rightarrow Available, currently under test
 - \mapsto Less material ... CTE fits better to our module ...

Capacitance variation vs temperature (for SiCap and MLCC technologies)

Back to normal: repetitive gated mode

- \triangleright Pedestals of frame ~1 (pedestal mask in DHPT to define rows for data taking)
- \triangleright 256 channels of one DCD in one plot
- \triangleright Switch to gated mode twice per frame, each 1.66 µs (can be shorter, just for test..)
 - → gate1: row 24 to 36 gate2: row 104 to 116 (one row corresponds to 128ns)
 (Veto signal in the DHE block RAM activated from row 22 to 36 DHPT first word twice)
- ▷ Pedestals are higher after GM and spread gets bigger after 2nd GM sequence ...

Closer look to the following frames

- \triangleright Pedestals in the following frames still disturbed
- \triangleright Pedestal spread at row 124 (~1µs after end of GM) still +/- 20 ADU
 - → 100% occupancy!
- \triangleright Try DCD analogue common mode correction!

With DCD analogue CM correction

- ▷ Analogue CM correction in DCD really works, and it helps indeed!!
- \triangleright Pedestal spread at row 124 (~1µs after end of GM) now at +/- 5 ADU
 - \rightarrow Possible to run with threshold >5
 - → Further optimization (DCD parameters, ClearHigh voltage..) may further decrease this

\triangleright Conclusion as of today: Gate + relaxation time \approx 1.5µs - 2µs for multiple GMs

- DHPT zs readout + analog CM on @ DCD
- Threshold 5ADU

- DHPT zs readout + analog CM on @ DCD
- Threshold 5ADU

\triangleright Changes introduced ...

- ▷ Switcher V_sub routing
- ▷ Better/different capacitors for GateOn and ClearOn close to the Switchers
- ▷ Switcher V_sub routing problem spotted only by chance!
 - In all lab setups: V_sub connected to GND since negative V_sub (more negative GateOn voltage) only needed after irradiation
 - → Decrease in Vref-V_sub can explain the differences of the Switchers along the balcony in normal operation
- \triangleright Gated Mode operation still being tested and optimized
 - → ASIC related: DCD settings, Switcher sequence
 - → DEPFET voltages: ClearOn voltage, Switcher V_sub on PXD9 pilot
 - → Power supply: PS breakout board + kapton add capacitors
 - → Continuous GM (4ms relaxation time)

▷ Question: continue PXD9 processing?

Back up: with DCD analog CM ON

20th Int. Workshop on DEPFET Detectors and Applications

DCD4 – analog CM on 2 DCD channels – 4 frames, 2 x Gated Mode frame 1-3

DCD1 – analog CM on Voltage scan: Gateoff, ClearOn, CCG1 – Clear Efficiency

DCD1 – analog CM on Voltage scan: Gateoff, ClearOn, CCG1 – SCP

sweeps_2016_04_28_run001

Back up: with DCD analog CM OFF

Voltage scan: Gateon, ClearOn– Clear Efficiency

Back up: with DCD analog CM OFF /ON

DCD2 Noise and offline CM value – with/without analog CM

DCD analog CM: on

Gated Mode – DCD Pin Map, 768ns after GM

All DCD channels deviation from mean after Gated Mode (GM stops in row 36)

-30

7766554433221100

DCD half-column

7766554433221100

DCD half-column

-30

7766554433221100

DCD half-column

W30-OB1 Pedestal Spread along one Row

Pedestal Variation for one Channel of DCD4

Pedestal Variation for one Channel of DCD4

Probing on PXD9 – W30-OB2

- 2 probes used (Picoprobe Model 7A): supply + reference voltage
- Difference calculated by oscilloscope
- Only few voltages measured up to now due to contact problems

35

W30-OB2 VDDA to AmpLow

Figure 1.3: Floating Supplies Voltage Ranges

Switcher_Vref & Switcher_Substrate

- Sw_Vref sense is connected at the beginning of the balcony
- Sw_Vref is connected in alu1 (with some support in alu2) along the balcony
- Sw Substrate is connected in alu2 from the wirebond pad to balcony. Along the balcony it is connected in alu1 (trace width design 14µm).
- Sw Substrate not sensed on PXD9 module
- Voltage Sw_Vref @ PXD9 Patch Panel (referenced to Sw_Sub) = 1.8V (ps settings Sw_Vref = -5200, Sw_Sub = -7000)
 - Only two of six Switcher work

240

210

180

150

120

90

60

30

PXD9 Mapping - W30 OB2

Sw Vref = -5000mV

700

600

500

400

200

100

0

700 readings / 200

gates

100

channels

150

200

50

Switcher_Vref & Switcher_Substrate

Pedestal Distribution after GM w/o analog CM, Frame3

3 frames, each 2 GM

Pedestal Distribution after GM w/ analog CM, Frame 3

3 frames, each 2 GM