



# FANGS

P. Ahlburg, J. Dingfelder, A. Eyring, N. Khetan, V. Filimonov, H. Krüger, <u>C. Marinas</u>, D. Pohl

**University of Bonn** 



#### **BEAST Commissioning Phase**



Motivation for commissioning phase **BEAST II**:

- Machine commissioning
- Radiation safe environment for the Vertex Detector (VXD):
  - Two layers DEPFET pixel detectors (PXD)
  - Four layers of double sided silicon strip detectors (SVD)

#### **BEAST Commissioning Phase**





- 2 PXD and 4 SVD layers in the direction where the highest backgrounds are expected
- At  $90^{\circ}$ ,  $180^{\circ}$  and  $270^{\circ}$  in  $\phi$  are the three **FANGS** staves
- FANGS uses the ATLAS IBL pixel detector modules for background measurements at BEAST II

cmarinas@uni-bonn.de

#### **Detector Requirements**





- During BEAST II: Final detector configuration (besides VXD chamber)
- 6.6 µm Au foil around beam pipe in BEAST II to enhance synchrotron radiation:
  - Maximum PXD hit rate of 28.64 KHz/cm<sup>2</sup> (~ factor 2 higher for FANGS)
  - $\circ$   $\,$  Withstand a total dose of 4 Mrad  $\,$
  - Largest contribution in the range of 10 90 keV





#### Absorption in Silicon

cmarinas@uni-bonn.de

#### **Total Particle Rates**





### FANGS: <u>FE-I4 ATLAS Near Gamma Sensors</u>







- FE-I4 read out chip High hit rates (400 MHz/cm<sup>2</sup>) and radiation hard (300 Mrad) IBM 130 nm CMOS process Read out for 80x336 pixels Thickness=150 µm Physical size=21x19 mm<sup>2</sup>
  - Sensor: n-in-n planar Pitch=**50x250 μm<sup>2</sup>** Thickness=200 μm Physical size=19x20 mm<sup>2</sup> HV=60 V Power=1.2 W
- Background radiation measurements in Phase 2:
  - Sensitive to low keV X-rays
  - Ability to measure high particle rates

#### **TDC Method**





- Two stage amplifier  $\rightarrow$  Discriminator with adjustable threshold.
- Time over threshold **(TOT)** with 40 MHz clock.
- Time to digital converter (TDC) uses 640 MHz FPGA clock.
- Output of each pixel is ORed (Trigger).
- Internal charge injection circuit for threshold tuning and calibration (PlsrDAC)

 $\rightarrow$  Both, high speed and adequate energy resolution achieved at the same time

### **TDC Method**





Two independent measurements simultaneously:

- A. TOT 40 MHz clock: 4 bit resolution
  - Contains pixel and timing information
- **B. TDC** with external FPGA's 640 MHz clock: 12 bit resolution
  - Voltage signal of comparator output with the highest charge
  - Limited to **one** pixel per readout

Improved resolution

cmarinas@uni-bonn.de

#### **Pixel Schematic**





cmarinas@uni-bonn.de

#### **Experimental Setup**





- MMC3: New data acquisition system for the BEAST experiment
  - Multiple FE read out in parallel
  - Faster FPGA; TDC Method may be improved
- Single ended HitOr signal converted to an LVDS signal.

### **Pixel-per-pixel Calibration of Hit Or Signal**





- Precise energy resolution requires pixel per pixel calibration
- Internal charge injection in units of PlsrDAC
- V<sub>th</sub> and TDC as a function of charge different for each pixel.

cmarinas@uni-bonn.de

### **Calibration and Dynamic Range**





70

### **Calibration and Dynamic Range**

universität**bonn** 



#### **Energy Resolution**





- Terbium  $K_{\alpha}$ =44.2 keV,  $K_{\beta}$  =50.7 keV
- ΔE = 6.4 keV

- Adequate energy resolution
- Better than 15 % above 10 keV

#### **Multiple Chip Readout**





- Hit map two FE under Sr90 illumination
- Multiple module parallel readout with MMC3
- Current stave design prompted by absorption of flex components

#### **Backside Illumination**







- Effect of components is eliminated by taking a source scan via backside (FE) illumination
- For BEAST, no material in front of the sensor; kapton running parallel to the modules

### **FANGS Stave Design Concept**



• Initial concept, following IBL stave design





• Revised design, adapted to BEAST needs







- Flex design for a single stave of 5 FE-I4 chips
- LVDS drivers converting single ended HitOr signal to differential signal for propagation over long cables
- Drivers positioned in backward direction shielded from radiation behind the PXD cooling block
- Radiation hardness to be investigated

#### cmarinas@uni-bonn.de





- Flex design for a single stave of 5 FE-I4 chips
- LVDS drivers converting single ended HitOr signal to differential signal for propagation over long cables
- Drivers positioned in backward direction shielded from radiation behind the PXD cooling block
- Radiation hardness to be investigated

#### cmarinas@uni-bonn.de

### **Hit Or Delay and Signal Quality Measurements**







• Convert single ended HitOr to differential

- Propagation delay of HitOr over a 19 m CAT 7
- Signal integrity maintained with delay of ~60 ns
- Improvement pulse shape under investigation

cmarinas@uni-bonn.de

### **Signal Integrity**





- Signal integrity maintained over 20 m cable
- Proper resolution over this range

#### cmarinas@uni-bonn.de

















### **FANGS Stave Fully Equipped**





<u>∽</u>

2 20



cmarinas@uni-bonn.de

279,9

#### **FANGS System**



3 Staves: Covering 90° , 180° , 270° in  $\varphi$  , full acceptance in  $\theta$ 



### **Aluminum Stave Material Budget**





- Low and flat material budget distribution
- No impact in outer detectors
- Further reduction possible if strong physics arguments
- Flex

100 µm thick polymide  $\rightarrow 0.035\%$ X<sub>0</sub> 70 µm Cu (2 layers)  $\rightarrow 0.50\%$ X<sub>0</sub> 50 µm thick Epoxy  $\rightarrow 0.014\%$ X<sub>0</sub>

Total<sub>Max</sub>: 3.9% X<sub>0</sub>

#### **Aluminum Stave Material Budget**





- Low and flat material budget distribution
- No impact in outer detectors

24  $\mu$ m Cu (2 layers)  $\rightarrow$  0.17%X<sub>0</sub>

66  $\mu$ m thick polymide  $\rightarrow 0.023\%$ X<sub>0</sub>

Total<sub>Max</sub>: 3.9% X<sub>0</sub>

#### cmarinas@uni-bonn.de







- Maximum temperature = -7 °C
- Maximum  $\Delta T$  within one sensor = 5 °C
- Power = 1.2 W each FE
- Cooling block =  $-15 \, {}^{\circ}C$
- Environment = 20 °C at 2 m/s

- Proper heat handling
- Low and flat temperature profile
- FOS integrated on the Al profile for temperature measurements

### **Energy Resolution with Temperature**





• No performance degradation is observed over the expected temperature range

cmarinas@uni-bonn.de

#### FANGS Phase 2 Set Up









- First stave being produced
- All components in place (including FOS)

cmarinas@uni-bonn.de

#### **Stave Production**







- First stave being produced
- All components in place (including FOS)

#### **Stave Production**





#### **CLAWS Staves**





cmarinas@uni-bonn.de

#### **PLUME Staves**





### **System Integration**





#### **System Integration**





#### **System Integration**





#### DESY Testbeam Schedule 2016 - Version 8 - 27/04/2016



|                     |                                   | DESY                     | Testbeam S     | chedule 2010          | 6 - Version 8 -   | 27/04/2016  | 5            |            |                  |   |
|---------------------|-----------------------------------|--------------------------|----------------|-----------------------|-------------------|-------------|--------------|------------|------------------|---|
| Schedi              | R in Sher, N                      | ar er ivi yr irs, Marcel |                | est Beam Coordina     | Beam Coordinators |             |              | A / A      | TD24             |   |
|                     |                                   | week -                   |                |                       | 1822              |             | Telescope in |            | 1824             |   |
|                     |                                   |                          | DATURA         | none                  | DURANTA           | none        | PCMAG        | PCMAG      | none             |   |
|                     | 4-Jan-16                          | 1                        |                |                       |                   |             |              |            |                  |   |
|                     | 11-Jan-16                         | 2                        |                |                       |                   |             |              |            |                  |   |
|                     | 18-Jan-16                         | 3                        |                |                       |                   |             |              |            |                  |   |
|                     | 1-Feb-16 5<br>8-Feb-16 6 Shutdown |                          |                |                       |                   |             |              |            |                  |   |
|                     |                                   |                          |                |                       |                   |             |              |            |                  |   |
|                     | 15-Feb-16                         | 7                        |                |                       |                   |             |              |            |                  |   |
|                     | 22-Feb-16                         | 8                        |                |                       |                   |             |              |            |                  |   |
|                     |                                   |                          | up Startup     |                       |                   |             |              |            |                  |   |
|                     |                                   |                          |                |                       |                   |             |              |            |                  |   |
|                     |                                   |                          |                | Au 183                |                   |             |              |            |                  |   |
|                     |                                   |                          |                | 1                     |                   | I           |              |            |                  |   |
|                     | The second                        |                          |                |                       |                   | l           | -            |            |                  |   |
| Belle-II            |                                   |                          |                |                       |                   |             |              |            |                  |   |
|                     | 1                                 | 1. 6.1.2                 |                | I do                  | 1 101             |             |              |            |                  |   |
|                     |                                   |                          |                |                       |                   | ALICE-AHCAL |              |            | SiPM             |   |
|                     |                                   | I. LEI                   |                | and the second second | 1000              | ALICE-AHCAL |              |            | SiPM             |   |
| 1                   |                                   |                          |                |                       |                   |             |              |            |                  | - |
| -                   | and and                           |                          |                |                       |                   |             |              |            |                  | 4 |
| Con the second      |                                   |                          |                |                       |                   |             |              |            | CMS-Pixel-Phase1 | n |
| Street Con Land Con | and a                             |                          |                |                       |                   |             |              |            |                  | ō |
|                     |                                   | JA AS A                  |                |                       |                   | ALICE-AHCAL |              |            |                  | L |
|                     |                                   | 8                        |                |                       |                   |             |              |            |                  |   |
|                     |                                   |                          |                |                       |                   |             |              |            |                  | 6 |
|                     |                                   |                          |                |                       |                   |             |              |            |                  | d |
|                     |                                   |                          |                |                       |                   |             |              |            |                  |   |
|                     |                                   |                          |                |                       |                   |             |              |            |                  |   |
| ¥.                  |                                   |                          |                |                       |                   |             | _            |            |                  |   |
| ANS                 |                                   |                          |                |                       |                   |             |              |            |                  |   |
|                     | 29-Aug-16                         | 35                       | 1              | 1                     |                   | I           |              |            | CBM-TRD          |   |
|                     | 5-Sep-16                          | 36                       |                |                       |                   |             |              |            |                  |   |
|                     | 12-Sep-16                         | 37                       |                |                       |                   |             |              |            |                  |   |
|                     | 19-Sep-16                         | 38                       |                |                       |                   |             |              |            |                  |   |
|                     | 26-Sep-16                         | 40                       |                |                       |                   |             |              |            |                  |   |
|                     | 10-Oct-16                         | 41                       |                |                       |                   |             | V            | XD Dry Te  | sts              |   |
|                     | 17-Oct-16                         | 42                       | CMS-Phase2-EPI |                       |                   |             |              |            |                  |   |
|                     | 24-Oct-16                         | 43                       | CMS-Phase2-EPI |                       | HEP for Teachers  |             |              |            |                  |   |
|                     | 31-Oct-16                         | 44                       |                |                       |                   |             |              |            |                  |   |
|                     | 7-Nov-16                          | 45                       |                |                       | Mu3e              |             | _            |            | -                |   |
|                     | 21-Nov-16                         | 40                       |                |                       |                   |             | Dhase        | 2 Dry Into | gration          |   |
|                     | 28-Nov-16                         | 48                       |                | 1                     | 1                 |             | Phase        |            | Bration          |   |
|                     | 5-Dec-16                          | 49                       |                |                       |                   |             |              |            |                  |   |
|                     | 12-Dec-16                         | 50                       |                |                       |                   |             |              | Belle-II   |                  |   |
|                     | 19-Dec-16                         | 51 Beam till 23/12 0800  |                |                       | <u> </u>          |             |              |            |                  |   |
| iarinas@uni-bonn    | ()(26-Dec-16                      | 52                       |                |                       |                   | Shutdown    |              |            |                  |   |

### Conclusion



- Front end has been tuned to cover the expected energy range with sufficient resolution for Beast Phase 2
- Multiple-FE DAQ demonstrated
- 20 m long cables tested
- Kapton flex and intermediate boards delivered
- Mechanical concept and cooling management finalized
- Stave production started
- FANGS to be ready by the end of the year for integration
  - Patch panels (Docks design)
  - **NEXT:** Radiation hardness flex electrical components
    - More realistic environment





## Thank you





cmarinas@uni-bonn.de