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BEAST Commissioning Phase 
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Motivation for commissioning phase BEAST II: 
• Machine commissioning 
• Radiation safe environment for the Vertex Detector (VXD):  
 

• Two layers DEPFET pixel detectors (PXD) 
• Four layers of double sided silicon strip detectors (SVD) 
 

 
 

 
 
 



BEAST Commissioning Phase 
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• 2 PXD and 4 SVD layers in the direction where the highest backgrounds are expected 
• At 900 , 1800  and 2700 in φ are the three FANGS staves 
• FANGS uses the ATLAS IBL pixel detector modules for background measurements at 

BEAST II 
 



Detector Requirements 
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• During BEAST II: Final detector configuration (besides VXD chamber) 
• 6.6 μm Au foil around beam pipe in BEAST II to enhance synchrotron radiation: 

o Maximum PXD hit rate of 28.64 KHz/cm2 (~ factor 2 higher for FANGS) 

o Withstand a total dose of 4 Mrad 
o Largest contribution in the range of 10 - 90 keV 

 



Absorption Probability 
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Total Particle Rates 
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Total: 
10 MHz/cm2 + 60 kHz/cm2 



FANGS: FE-I4 ATLAS Near Gamma Sensors 

 
• FE-I4 read out chip 

High hit rates (400 MHz/cm2) and 
radiation hard (300 Mrad) 
IBM 130 nm CMOS process 
Read out for 80x336 pixels 
Thickness=150 µm 
Physical size=21x19 mm2 
 

• Sensor: 
n-in-n planar 
Pitch=50x250 µm2 

Thickness=200 µm 
Physical size=19x20 mm2 
HV=60 V 
Power=1.2 W 

• Background radiation measurements in Phase 2: 
• Sensitive to low keV X-rays 
• Ability to measure high particle rates 
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TDC Method 
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• Two stage amplifier → Discriminator with adjustable threshold. 
• Time over threshold (TOT) with 40 MHz clock. 
• Time to digital converter (TDC) uses 640 MHz FPGA clock. 
• Output of each pixel is ORed (Trigger). 
• Internal  charge injection circuit for threshold tuning and calibration (PlsrDAC) 

 

→ Both, high speed and adequate energy resolution achieved at the same time 
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TDC Method 
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Two independent measurements 
simultaneously: 
 
A. TOT 40 MHz clock: 4 bit resolution 

• Contains pixel and timing 
information 

 
B. TDC with external FPGA’s  640 MHz 

clock: 12 bit resolution 
• Voltage signal of comparator 

output with the highest charge 
• Limited to one pixel per readout 
 

 Improved resolution 
 



Pixel Schematic 
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Hit Bus 

• Output for each pixel in ORed : All pixels above threshold are 
always read. The pixel with the highest charge thus longest TOT 
can be additionally measured with the FPGA TDC to get the 
charge signal with higher precision. 
 
• Hit Bus also used as self trigger 
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Experimental Setup  

• MMC3: New data acquisition system for the BEAST experiment 

• Multiple FE read out in parallel 

• Faster FPGA; TDC Method may be improved 

• Single ended HitOr signal converted to an LVDS signal.  
11 
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• Precise energy resolution requires pixel per pixel calibration 
• Internal charge injection in units of PlsrDAC  
• Vth and TDC as a function of charge different for each pixel. 

Pixel-per-pixel Calibration of Hit Or Signal 
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Calibration and Dynamic Range 
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• Dynamic range 10-60 keV (wider also possible) 
• Lowest measured plsrDAC value ~ 7 

• Threshold of ~1000 electrons feasible 



Calibration and Dynamic Range 
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Y. Soloviev 

• Dynamic range 10-60 keV (wider also possible) 
• Lowest measured plsrDAC value ~ 7 

• Threshold of ~1000 electrons feasible 

10-90 keV 



Energy Resolution 
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• Adequate energy resolution 
•    Better than 15 % above 10 keV 

3D sensor 

•  Terbium  Kα=44.2 keV, Kβ =50.7 keV 
•  ΔE = 6.4 keV 
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Multiple Chip Readout 
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• Hit map two FE under Sr90 
illumination 

• Multiple module parallel readout 
with MMC3 

• Current stave design prompted by 
absorption of flex components 
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Backside Illumination 
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• Effect of components is eliminated by taking a 
source scan via backside (FE) illumination 
 

• For BEAST, no material in front of the sensor; 
kapton running parallel to the modules 
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FANGS Stave Design Concept 
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• Initial concept, following IBL stave design 

• Revised design, adapted to BEAST needs 

Connecter 
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Kapton Design 
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• Flex design for a single stave of 5 FE-I4 chips 
• LVDS drivers converting single ended HitOr signal to differential signal for 

propagation over long cables 
• Drivers positioned in backward direction shielded from radiation behind 

the PXD cooling block 
• Radiation hardness to be investigated 

LVDS DRIVERS 
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Kapton Design 
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• Flex design for a single stave of 5 FE-I4 chips 
• LVDS drivers converting single ended HitOr signal to differential signal for 

propagation over long cables 
• Drivers positioned in backward direction shielded from radiation behind 

the PXD cooling block 
• Radiation hardness to be investigated 

LVDS DRIVERS 
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Hit Or Delay and Signal Quality Measurements 
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• Propagation delay of HitOr over a 19 m CAT 7 
• Signal integrity maintained with delay of ~60 ns 
• Improvement pulse shape under investigation  
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• Convert  single ended HitOr to differential 



Signal Integrity 
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• Signal integrity maintained over 20 m cable 
• Proper resolution over this range 
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FANGS Stave Assembly 
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FANGS Stave Assembly 
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FANGS Stave Assembly 
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FANGS Stave Assembly 
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FANGS Stave Fully Equipped 
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FANGS System 
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3 Staves: Covering  90º , 180º , 270º in φ, full acceptance in θ 



Aluminum Stave Material Budget 
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• Support: 
3 mm thick Aluminum → 3.4%X0 
 
• Glue: 
50 µm thick Epoxy → 0.014%X0 
 
• FE-I4 
150 µm thick Silicon → 0.16%X0 
 
• Sensor: 
200 µm thick Silicon → 0.21%X0 
 
• Solder balls 
25 µm thick SnAg → 0.17%X0 (3.3% of the area) 
 
• Flex 
100 µm thick polymide → 0.035%X0 
70 µm Cu (2 layers) → 0.50%X0 

50 µm thick Epoxy → 0.014%X0 
 

 

Aluminum 

FE-I4 

Sensor 

Wire bonds 

Flex Glue 

Solder 

3.9% X0 2.3% X0 

• Low  and flat material budget distribution 
• No impact in outer detectors 
• Further reduction possible if strong physics 

arguments 
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TotalMax: 3.9% X0 



Aluminum Stave Material Budget 
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• Support: 
3 mm thick Aluminum → 3.4%X0 
 
• Glue: 
50 µm thick Epoxy → 0.014%X0 
 
• FE-I4 
150 µm thick Silicon → 0.16%X0 
 
• Sensor: 
200 µm thick Silicon → 0.21%X0 
 
• Solder balls 
25 µm thick SnAg → 0.17%X0 (3.3% of the area) 
 
• Flex 
66 µm thick polymide → 0.023%X0 
24 µm Cu (2 layers) → 0.17%X0 

• Low  and flat material budget distribution 
• No impact in outer detectors 
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Reminder: PXD+SVD contribute with ~3.5% X0 

TotalMax: 3.9% X0 

M. Ritter 



FEA of the FANGS Stave 
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• Maximum temperature = -7 ºC 
• Maximum ΔT within one sensor = 5 ºC 
• Power = 1.2 W each FE 
• Cooling block = -15 ºC 
• Environment = 20 ºC at 2 m/s 

• Proper heat handling 
• Low and flat temperature profile 
• FOS integrated on the Al profile for 

temperature measurements 
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Energy Resolution with Temperature 
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• No performance degradation is observed over the expected temperature range 



FANGS Phase 2 Set Up 
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Stave Production 
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• First stave being produced 
• All components in place (including FOS) 



Stave Production 
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• First stave being produced 
• All components in place (including FOS) 



Stave Production 
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CLAWS Staves 
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Mostly focus on Phase 1 
 
Con: Phase 2 development slightly delayed 
Pro: DAQ already integrated 



PLUME Staves 
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Tilted option for better radial coverage 



System Integration 
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System Integration 
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PLUME services routing under discussion 



System Integration 
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Phase 2 Dry Integration 

VXD Dry Tests 

Schedule 2016 

cmarinas@uni-bonn.de 42 



Conclusion 
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• Front end has been tuned to cover the expected energy range with sufficient 
resolution for Beast Phase 2 
 

• Multiple-FE DAQ demonstrated 
 

• 20 m long cables tested 
 

• Kapton flex and intermediate boards delivered 
 

• Mechanical concept and cooling management finalized 
 

• Stave production started 
 

• FANGS to be ready by the end of the year for integration 
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• Patch panels (Docks design) 
• Radiation hardness flex electrical components 
• More realistic environment 

NEXT: 
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Thank you 
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