bmb+f - Förderschwerpunkt

Elementarteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Hybrid 5 tests: Lab characterization and Irradiations

20th international workshop on DEPFET detectors and applications 11th - 14th May 2016, Seeon

> J. Dingfelder, L. Germic, T. Hemperek, C. Hönig, H Krüger, F. Lütticke, C. Marinas, B. Paschen, N. Wermes

> > **University of Bonn**

PXD 9 Production (Pilot Run)

Pilot module: 4 + 4 + 6 ASICs and large matrix

Small matrices (80 x 32 pixels / 20 gates, 128 drainlines)

Full module with large matrix (768 x 250 pixels / 191 gates, 1000 drainlines) PXD 9 wafer with modules and test structures

The Hyrid 5 Test System

- PCB with minial number of ASICs for a full test system
- Many test points and configuration possibilities
- Well suited for testing of new components

DHP (Data reduction)

DCD (Drain current digitization)

Small matrix

(64 x 32 pixels / 16 gates, 128 drainlines)

paschen@physik.uni-bonn.de

Laboratory measurements with radioactive sources

Setup:

· Electrons from Strontium act as MIPs

paschen@physik.uni-bonn.de

Strontium Measurement

Example measurement at good working point

- Source spot clearly visible
- Drain currents relatively homogeneous

Strontium Measurement: Drift vs. High Voltage

universität**bonn**

paschen@physik.uni-bonn.de

~ 1.8 M Triggers per measurement point

6

Strontium Measurement

Clear-On: 20 V, Gate-On: -2.5 V, Gate-Off: 3 V Source: 7 V, Bulk: 10 V, Guard: 5 V HV: -70 V, Drift: -5 V

Rings in the matrix

Rings of different hit efficiency are visible for certain working points

- Seem t o be concentric with the wafer
- Current explanation: Doping variation inside the wafer introduced during crystal growth ٠

Even/Odd Effect

For certain working points even and odd rows show differences in hit rates and drain currents

- Not understood yet
- Drain current histogram does not look homogeneous anymore

Even/odd effect

Signal even/odd rows

- Behavior changes quickly within steps of 2 V of high voltage
- Magnitude of change depends on drift voltage

- Red laser with DUT on motor stage
- 3 µm laser spot
- Spacially resolved measurement

Irradiation of DHPT1.1 and DCDB4pp at KIT

germic@physik.uni-bonn.de, hoenig@physik.uni-bonn.de, paschen@physik.uni-bonn.de

Hybrid 5 laboratory tests

Hybrid 5 laboratory tests

	Т	'in	۱e	lir	ne o	f th	e	DI	HP	'T	1.1	1 a	n] k)(C)p	р	lrr	ac	sik	ati	ioi	n (Ca	m	ıр	aig	jn	a	t k	(17	r i	n	Ma	arc	:h	ı 2	01	16					
Day	DEPFET																_	_					Mor	nday	, ;	3/7/	20	16	-																
Time																							18			1	9			20)			21				22			2	3			
Irradiation																	5																	25	0 k					500) k				
Measurements	3 Acting actor								Silizium La							abor Bonn						ADC sweep scans					6																		
Progress	Prixel Deter																											1 11																	
	Tu	Tuesday 3/8/20				<mark>)16</mark>																																				Т			
Time	0				1		2	2			3				4				5				6				7			8	3			9				10			1	1			
Irradiation	75	0 k				1.00	M																																		1.25	М			
Measurements						ADC sw			swee	eep scans																																			
Progress																														1														11 11	
Time	12				13		14	1			15			1	16				17			ŀ	18			1	9		-	20)			21				22			2	3			
Irradiation		1.5	50 N	1		1.75	М			2.0) M																				2.	25 N	N			2.5	М			-	2.75	М			
Measurements											ADC sweep		o so	scans																															
Progress																																												11 11	
	W	edn	esd	ay	3/9/2	016																																							
Time	0				1		2	2			3				4				5				6				7			8	3			9				10			1	1			
Irradiation	3.0	D M																																					4.0	0 M					
Measurements	ADC sweep scans																																						Sca	ans	durir	ıg ir	radia	atio	n
Progress																									<u> </u>																		<u> </u>	11 11	
Time	12				13		14	ŀ			15			1	16				17			·	18			1	9			20)			21				22			2	:3			
Irradiation																																													
Measurements				AD	Cs	ADC	swe	ер	scan	าร							2	Irr	ont	et	atı	16.									ſ	7											0	•	
Progress										П									ent	. JI	.a.i	, , ,										DONE													

DHPT1.1 Highspeed Link

germic@physik.uni-bonn.de, hoenig@physik.uni-bonn.de, paschen@physik.uni-bonn.de

DHPT1.1 Highspeed Link

26

Extractions of eye diagram measurement

DCD ↔ **DHP** communication

germic@physik.uni-bonn.de, hoenig@physik.uni-bonn.de, paschen@physik.uni-bonn.de

0 MRad

Delay scan - H5_0_05 - asicpair: 1

1 MRad

Delay scan - H5_0_05 - asicpair: 1

2 MRad

Delay scan - H5_0_05 - asicpair: 1

3 MRad

Delay scan - H5_0_05 - asicpair: 1

4 MRad

Delay scan - H5_0_05 - asicpair: 1

4 MRad in Bonn

Delay scan - H5_0_05 - asicpair: 1

DCD optimization

germic@physik.uni-bonn.de, hoenig@physik.uni-bonn.de, paschen@physik.uni-bonn.de

DCD is the part of the electronics directly connected to the matrix. It is responsible for digitizing the signal current generated in the matrix.

Optimize DCD for:

- range of curve
- linearity
- missing codes/bit errors
- noise

DCD and its parameters

Unirradiated Optimal: AmpLow = 300 mV RefIn = 900 mV

1000 kRad Optimal: AmpLow = 250 mV RefIn = 900 mV 2000 kRad Optimal: AmpLow = 600 mV RefIn = 1000 mV (determined by program)

AmpLow – RefIn scan

3000 kRad Optimal: AmpLow = 250 mV RefIn = 900 mV

AmpLow – Refln scan

4000 kRad Optimal: AmpLow = 200 mV RefIn = 900 mV After irradiation back in Bonn Optimal: AmpLow = 250 mV RefIn = 900 mV (determined by program)

Unirradiated Optimal: Ipsource = 110 mV Ipsource 2 = 110 mV

1000 kRad Optimal: Ipsource = 100 mV Ipsource 2 = 95 mV

2000 kRad Optimal: Ipsource = 100 mV Ipsource 2 = 95 mV

Ipsources scan

Scans done with different number of channels some use 12 channels some use 87.

3000 kRad Optimal: Ipsource = 95 mV Ipsource 2 = 90 mV

Ipsources scan

4000 kRad Optimal: Ipsource = 110 mV Ipsource 2 = 100 mV After irradiation Optimal: Ipsource = 105 mV Ipsource 2 = 95 mV

Scans done with different number of channels some use 12 channels some use 87.

250 kRad

Range

Missing code

1250 kRad

hoenig@physik.uni-bonn.de

2250 kRad

Range

11:22

Noise

Missing code

3000 kRad

OHP2

Correls

hoenig@physik.uni-bonn.de

universität**bonn**

4000 kRad

Maxing Crebr E S P F C Y A Y A R R LE LE LE LE LE Courses

(10.000)

Noise

Missing code

Back in Bonn

Noise

hoenig@physik.uni-bonn.de

Continuous measurement

hoenig@physik.uni-bonn.de

Continous measurement during 1 MRad step

Continous measurement during 1 MRad step

- First characterization of small PXD9 matrix with Strontium source and laser light at laboratory
 - Ring effect likely due to doping vatiations
 - Odd/even effect not understood
 → more detailed measurements necessary
 - Good working point could be found
 - \rightarrow lab tests with full matrix necessary
- Irradiation of DHPT1.1 and DCDB4pp with X-ray source
 - High speed links stable against radiation up to 4 Mrad
 - Optimal working point of DCD stable
 - Degradation of DCD <-> DHP data transmission (maybe bad asicpair)

paschen@physik.uni-bonn.de

Hybrid 5 remains major test vehicle for new components

- Received 6 fresh Hybrid 5 boards in Seeon
 - Populated with SMD components at HLL
- Received 7 wirebond adapters with DCD4.1/2 + DHPT1.1 from HLL
 - Assembly onto 7 Hybrid 5 boards in bonn
 - Distributed characterization in Goettingen and Bonn
 - → urgently need new DHE software for new DCD JTAG handling
- As soon as hybrids work and bonded Switchers are available:
 - Add Switchers and small PXD9 matrices to some hybrids for more characterization
- Irradiation campaign? Parasitic test at future PXD exclusive beam test?

paschen@physik.uni-bonn.de

bmb+f - Förderschwerpunkt

Elementarteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

universitätbonn SILAB

Thank you