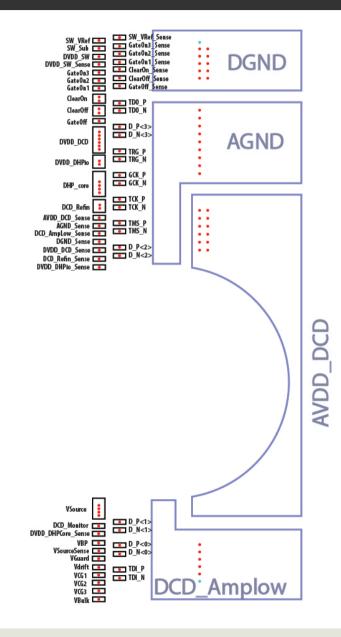


Probe Card Status.

M. Boronat (<u>boronat.arevalo@ific.uv.es</u>), P.Gomis, M. Vos, D. Esperante, J. Fuster, C. Lacasta - IFIC – Valencia (Spain), C. Koffmane – HLL-MPG – Munich (Germany)

DEPFET pre-test

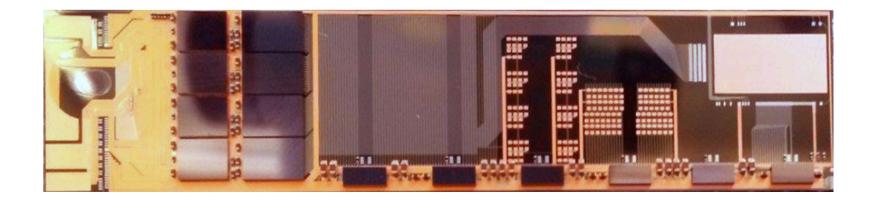
- The DEPFET modules, full assembled, will include the "kapton" cable attached.
- After attaching the "kapton" cable, reworking may be impossible.
- The idea is to pre-test the modules before attaching the kapton cable.
- A needle card is required.

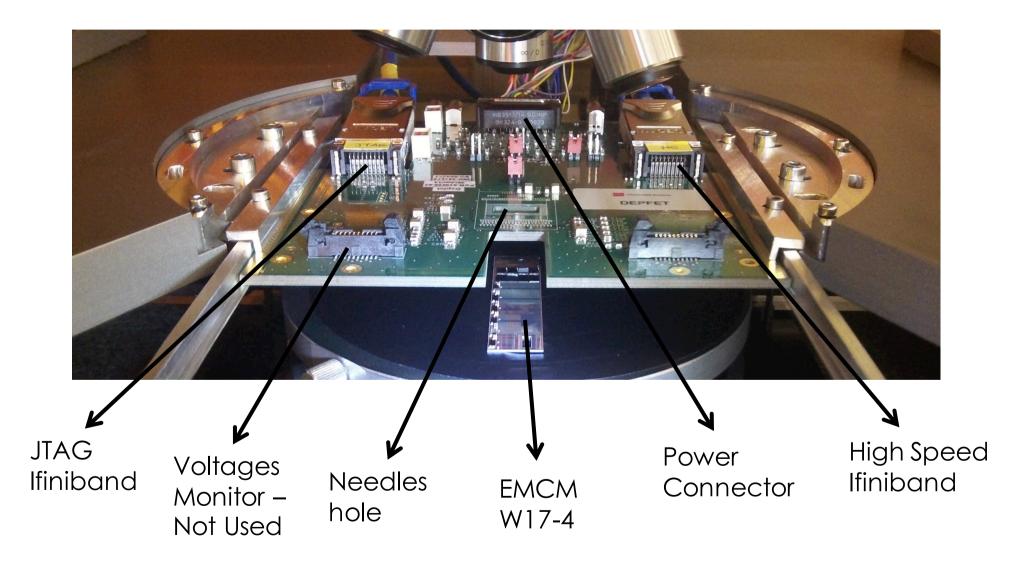

PXD9 & Needle Card

Pad distribution PXD9

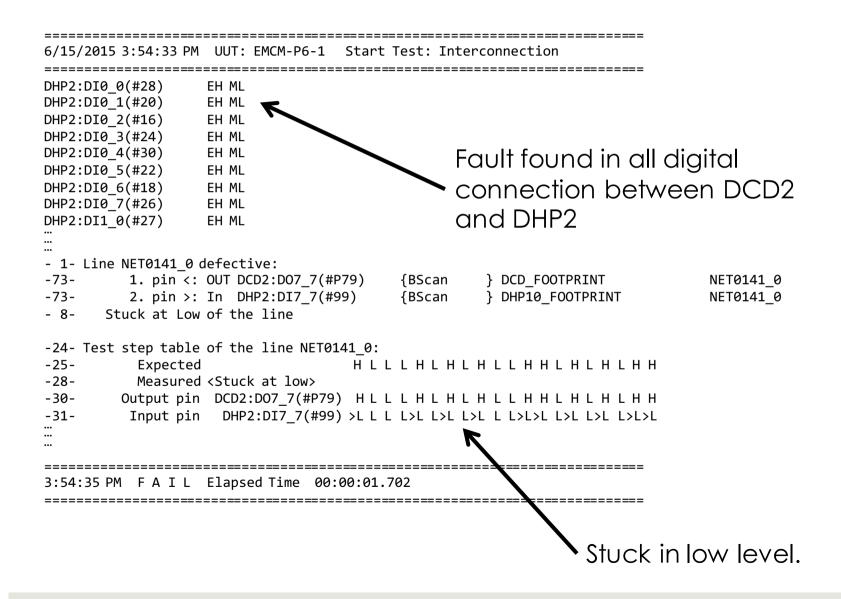
- 59 small aluminium pads, 4 big copper pads.
- 8 pads for high speed differential lines.

Solutions:

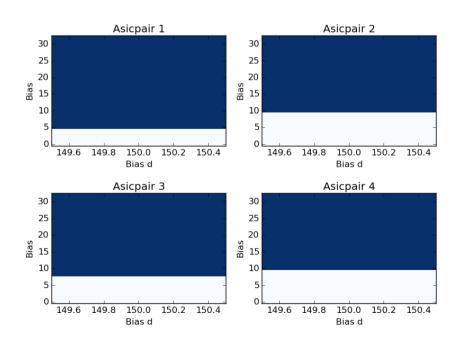

- 114 needles were required (multiple needles in the big pads).
- PCB size was limited by connectors (Power + Infiniband).
- Design priority: rather simple and passive PCB, minimizing the path length of the high speed signals


EMCM Needle Card

EMCM (electrical module without active area):

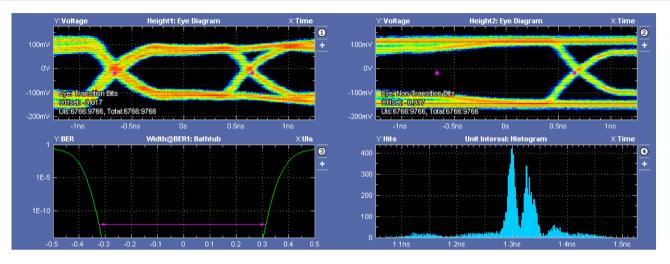

- □ A probe-card for the EMCM has been build.
- □ The results prove the feasibility of testing with a needle-card.
- The PXD9 pads layout is slightly different from the EMCM pads layout, a new needle card design is required.

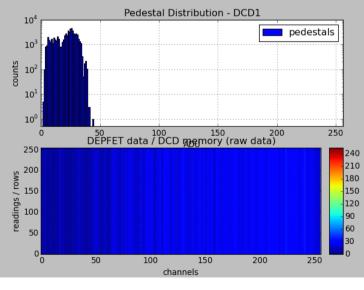
EMCM Needle Card



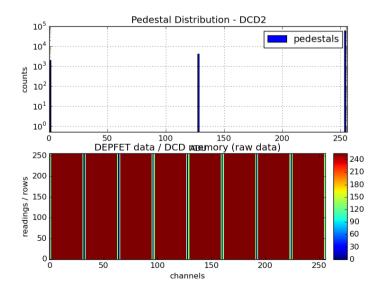
Boundary Scan – EMCM W17-4

High Speed Link Stability (Half Rate).


- Test the High Speed link stability with the DHE software.
- Measure the eye diagram.
- Test the High Speed link stability with the random pattern.
- Readout Data.


PXD:H1033

Script to optimize the HSL – blue region means the link is up.


High Speed Link Stability.

HSL Eye Diagram at Half Rate - DHP 0

Pedestals read out form DCD1

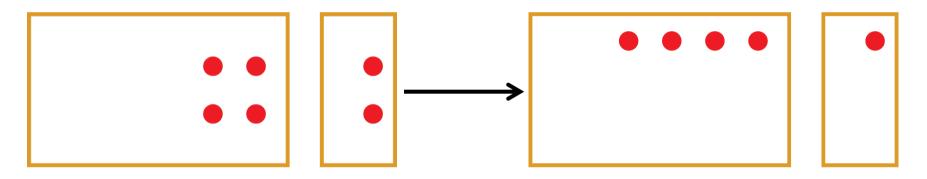
Delay Settings Optimization Results

EMCM Needle Card - Summary

If the contact between the needles and the module pads is good enough, there is no problem to operate the module, even to get stable high speed links.

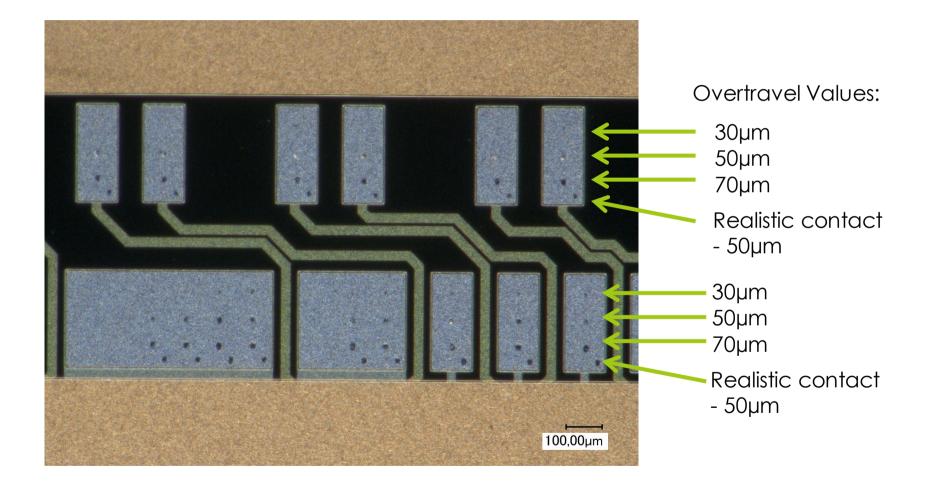
PXD9 Needle Card Modifications

- Needle card for PXD9 \rightarrow two new designs are required.
 - Design A: outer-bwd, inner-fwd modules
 - Design B: outer-fwd, inner-bwd modules
- High Speed Link optimization
 - Reduce length of HSL needles
 - Reduce length of the HSL PCB paths.
- \square To reduce the damage \rightarrow new needles contact distribution
- To avoid unexpected increments of the voltages due to bad contact in needles of the sense lines → pull up resistors.

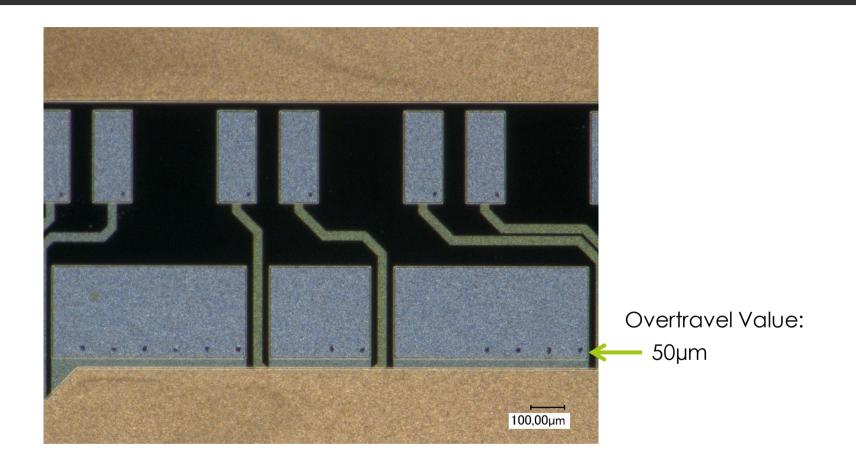

PXD9 Needles A

PXD9 Needles A, contact distribution

Distribution of the needles contact point:



Double row distribution.


Linear distribution

A linear distribution allows to contact in the corner of the pad, focusing the possible damage in this small region

PXD9 Needles A, contact distribution Test

PXD9 Needles A, contact distribution test

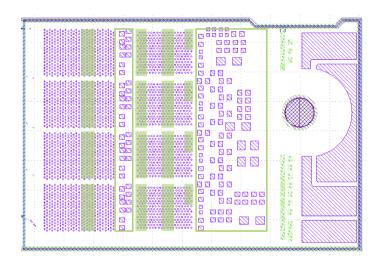
Expected damage performed on the pad, due to the test with the needle card.

PXD9 Needles A, Test

<u>C</u>												
	OWERSU	pply Cor	itrol	trol S(DEVICE) Disconne Disconne						Enlergency Shuldown		
	D 🗖 C	CONNECTED			CVP		THE	RMAL 🧧	UPS	PS RUNNING		
ENABL	E	DISABLE										
	min.	Set Current	max.	min.	Set Voltage	max.	Reg.	Voltage at Regulator	Voltage at Load	Current		
sw-sub	0 mA	0 mA	0 mA	0 mV	0 mV	0 mV		-26 mV	-33 mV	0 mA	sw-sub	
sw-dvdd	0 mA	30 mA	30 mA	0 mV	1800 mV	2000 mV		1882 mV	1803 mV	0 mA	sw-dvdd	
sw-refin	0 mA	0 mA	0 mA	0 mV	0 mV	0 mV		-29 mV	-29 mV	0 mA	sw-refin	
dcd-amplow	0 mA	1300 mA	1300 mA	0 mV	400 mV	500 mV		261 mV	173 mV	0 mA	dcd-amplow	
dcd-avdd	0 mA	3000 mA	3000 mA	0 mV	1900 mV	2000 mV		2009 mV	1902 mV	1 mA	dcd-avdd	
dcd-dvdd	0 mA	940 mA	1000 mA	0 mV	1900 mV	2250 mV		1984 mV	1899 mV	3 mA	dcd-dvdd	
dcd-refin	0 mA	1000 mA	1000 mA	0 mV	900 mV	1300 mV		988 mV	896 mV	0 mA	dcd-refin	
dhp-core	0 mA	730 mA	800 mA	0 mV	1200 mV	1640 mV		1271 mV	1203 mV	1 mA	dhp-core	
dhp-io	0 mA	550 mA	550 mA	0 mV	1800 mV	2200 mV		1880 mV	1798 mV	2 mA	dhp-io	
bulk	0 mA	10 mA	10 mA	0 mV	10000 mV	10000 mV		9997 mV	10001 mV	0 mA	bulk	
clear-on	0 mA	30 mA	30 mA	0 mV	20000 mV	25000 mV		20066 mV	19994 mV	0 mA	clear-on	
clear-off	0 mA	30 mA	30 mA	0 mV	5000 mV	20000 mV		5012 mV	5009 mV	0 mA	clear-off	
gate-on1	0 mA	30 mA	30 mA	-4000 mV	-2500 mV	3000 mV		-2509 mV	-2498 mV	0 mA	gate-on1	
gate-on2	0 mA	30 mA	30 mA	-4000 mV	-2500 mV	3000 mV		-2507 mV	-2502 mV	0 mA	gate-on2	
gate-on3	0 mA	30 mA	30 mA	-4000 mV	-2500 mV	3000 mV		-2509 mV	-2502 mV	0 mA	gate-on3	
gate-off	0 mA	30 mA	30 mA	0 mV	3000 mV	6000 mV		3007 mV	3000 mV	0 mA	gate-off	
source	0 mA	100 mA	150 mA	0 mV	7000 mV	7000 mV		7201 mV	7004 mV	0 mA	source	
ccg1	0 mA	10 mA	10 mA	-5000 mV	-1000 mV	3000 mV		-999 mV	-1000 mV	1 mA	ccg1	
ccg2	0 mA	10 mA	10 mA	-5000 mV	-1000 mV	3000 mV		-1001 mV	-1000 mV	1 mA	ccg2	
ccg3	0 mA	10 mA	10 mA	-5000 mV	-1000 mV	3000 mV		-1004 mV	-1003 mV	0 mA	ccg3	
hv	0 mA	10 mA	10 mA	-80000 mV	-30000 mV	0 mV		-30028 mV	-30045 mV	0 mA	hv	
drift	0 mA	10 mA	10 mA	-6000 mV	-5000 mV	0 mV		-5003 mV	-5001 mV	0 mA	drift	
polycover	0 mA	0 mA	10 mA	0 mV	0 mV	0 mV		-25 mV	-25 mV	0 mA	polycover	
guard	0 mA	10 mA	30 mA	-6000 mV	-5000 mV	0 mV		-5005 mV	-5004 mV	0 mA	guard	

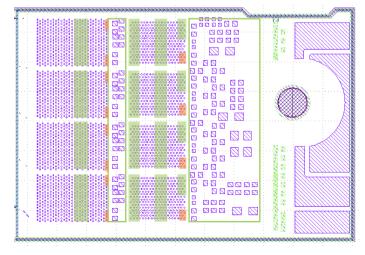
All voltages applied. The voltages are sensed on the PCB. Normal behavior ➤ No shorts on the voltage lines.

To continue the tests, one fully assembled PXD9 module without kapton is required.


Based on the results...

Based on the results a preliminary testing protocol can be proposed:

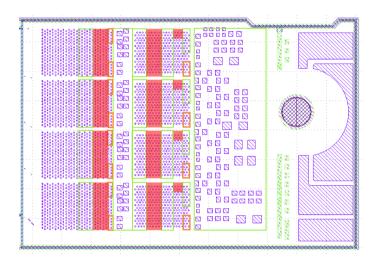
- Visual Inspection.
- Check of Voltages & Currents
- Chip Configuration: JTAG Write & Read
- Boundary Scan
- High Speed Link Stability
- Check of Voltages & Currents (DCDB Analogic Part)
- Read DCDB Pedestals
- Check of Voltages & Currents (Matrix)
- Read Matrix Pedestals
- Modification of Switcher Sequence: Matrix Saturation

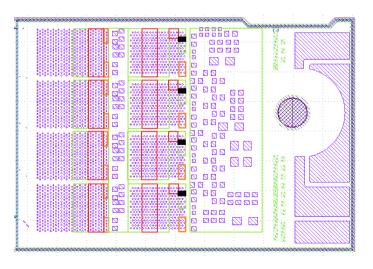

Check of Voltages & Currents

- Tested:
 - Proper connection between the ASICs and the Power Supply
 - Expected current consumption → Normal behaviour of the ASICs

Chip Configuration: JTAG Write & Read

- Use the automatic configuration script & Change, Write & Read some parameters
- Tested:
 - Proper slow control connection.
 - Proper ASICs response




Boundary Scan

- Tested:
 - Proper boundary cell structure, chip ID & communication with JTAG controller
 - Check of the digital connections between boundary cells.

High Speed Link Stability

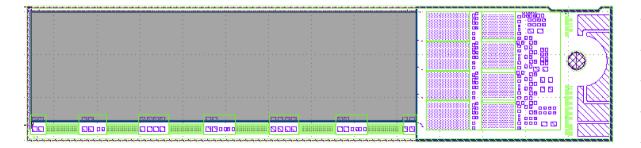
- DHE software to establish the links
- IBERT & Random pattern to debug
- Tested:
 - Quality of the data transfer connection

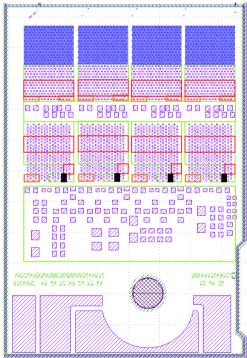
Delays & Test Injection

- Use the delays optimization script
- Quality of the data transferred using the Injection Pattern

Check of Voltages & Currents (DCDB Analogic Part)

Read DCDB Pedestals


Check of Voltages & Currents (Matrix)


											-
	1.1		1.00	1.00					1		
i i	1	1	1	1	1	1	1	1	1		\sim
H.				•					1 A A A A A A A A A A A A A A A A A A A		\sim
H.									1		$\overline{2}$
H.											\sim
H.											-N
· Kraa											N
fi 👘											- U
6	1		1								— AI
fi 👘	1								1 A A A A A A A A A A A A A A A A A A A		$ \sim$
fi 👘	1	1		:					1	이 이상 이상 이상 수 있는 것이 아이가 있는 것 같은 것 같은 것 같이 있는 것이 없다. 이렇게 있는 것이 있는 것이 없는 것 않이	\sim
ji 👘									100 B		\sim
. 1											MM
1									1.00		\Rightarrow
1	1	1	1		1	1					\sim
CONTRACTOR	a :	ENER .		- 1 I				NUM -	i in ma		\sim
											\div
											\sim
1.0.		· · · · ·		- · ·							777

Read Matrix Pedestals

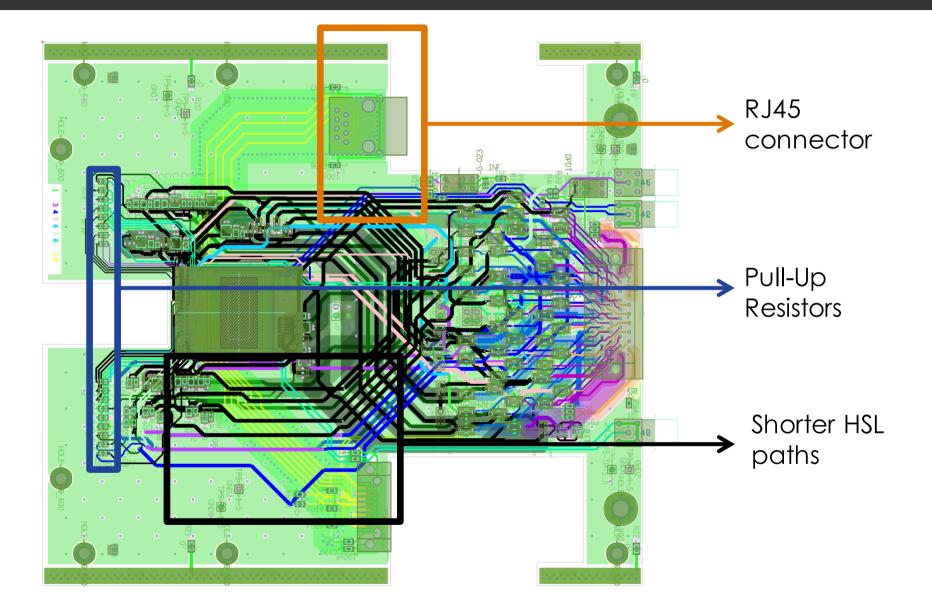
Modification of Switcher Sequence: Matrix Saturation

- Change the Switcher sequence, removing clean process to saturate the matrix
- Tested:
 - Response of the matrix
 - Proper operation of the Switcher

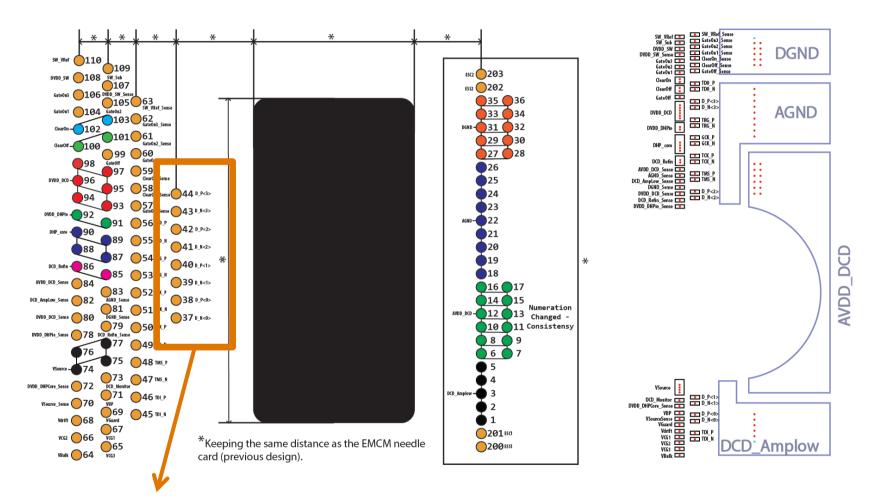
Summary

- The pre-test of the modules, with the needle card, is an important step to ensure the viability of the rework in case of ASIC problems.
- The test performed with the EMCM needle card prove its feasibility.
- The PCB design has been modified to suit the PXD9 pad layout A, to improve the stability of the HSL and reduce the damage on the module pads.
- With the testing protocol, all the ASIC aspects are covert. But further studies are required to ensure the safety in all the steps.

To continue the tests, one fully assembled PXD9 module without kapton is required. After ensure the performance of the current prototype, the production of the PCB design B will be carried out.

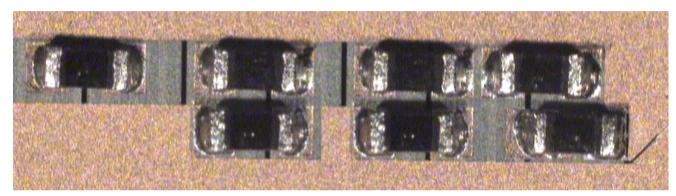


THANK YOU

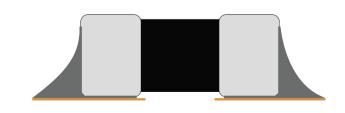


BACKUP

PXD9 Needle Card PCB A

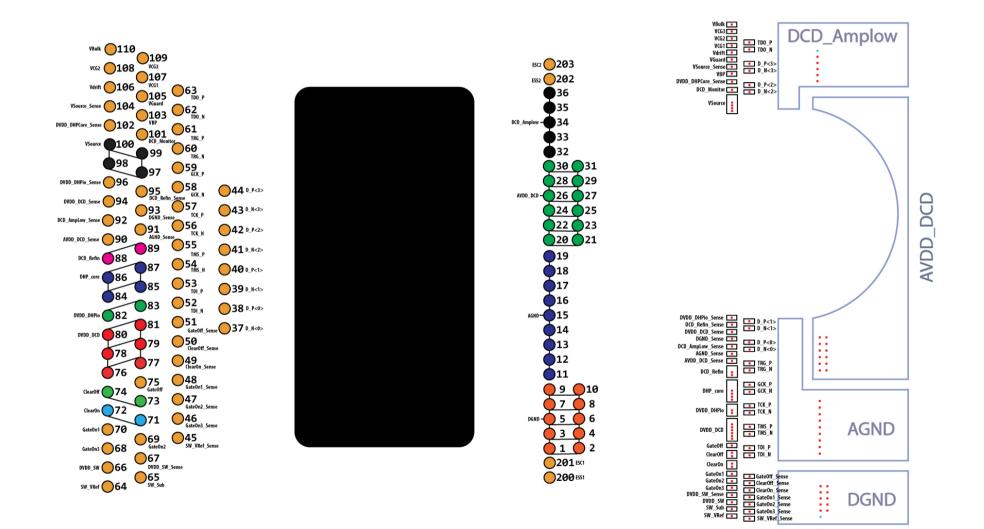


PXD9 Needles A

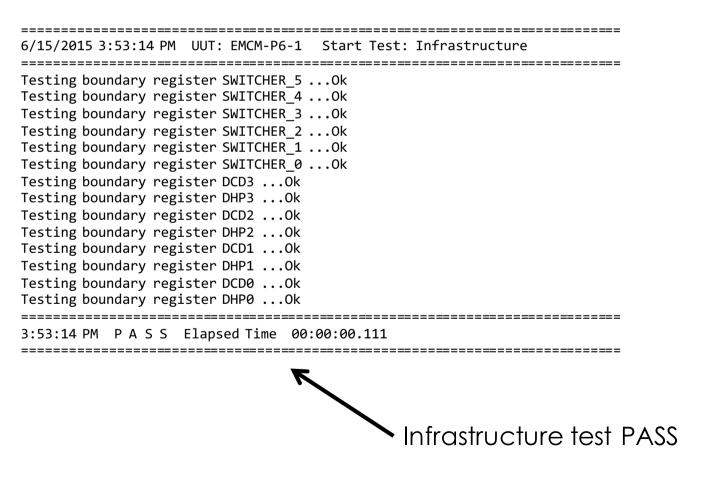


HSL Needle attaching hole

Visual Inspection



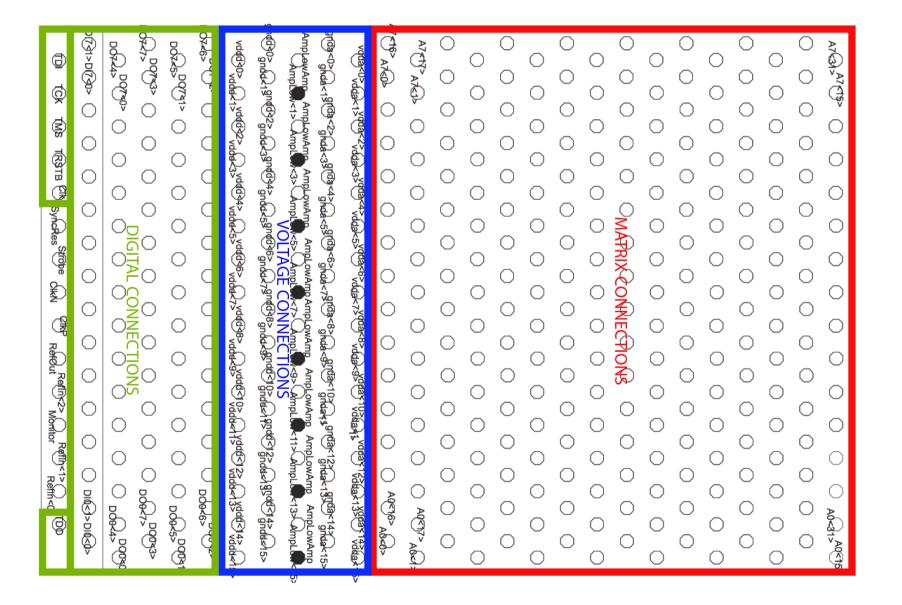
- Visual Inspection over SMDs and the rest of the components.
- Tested:
 - Visual quality of the SMDs soldering.
 - Any visual inconvenience in the module.



PXD9 Needles B

Boundary Scan – EMCM W17-4

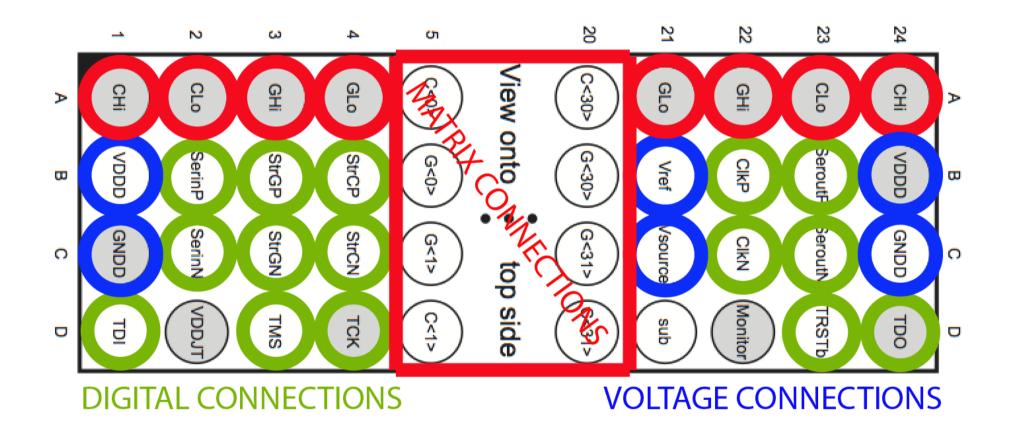
Measurements with the hardware provided by Goepel

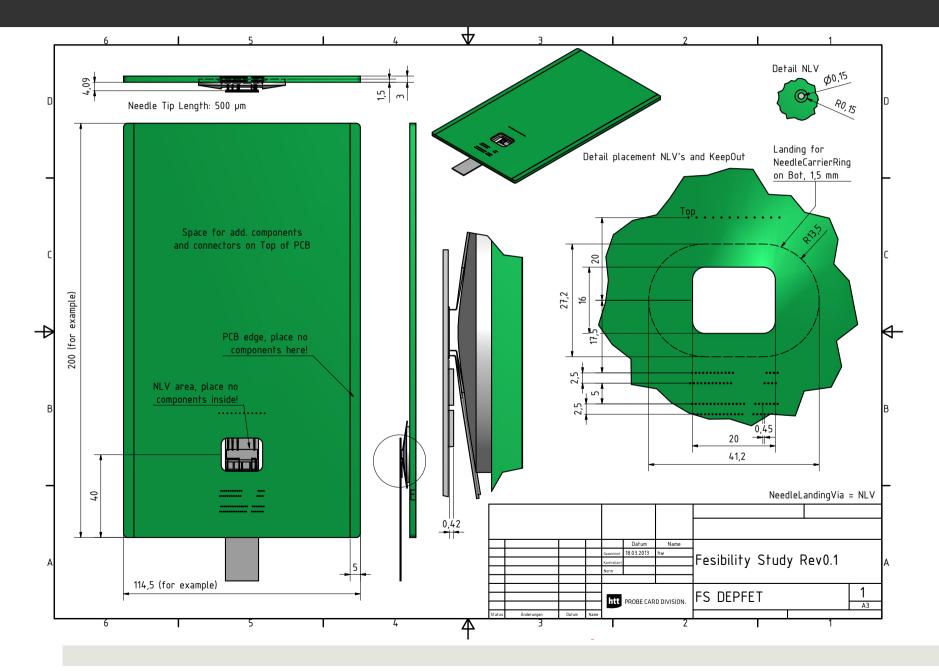


High Speed Link Stability

9	🔮 IBERT Console - DEV:0 MyDevice0 (XC6VLX130T) UNIT:1_0 MyIBERT V6 GTX1_0 (IBERT V6 GTX)											
	MGT	/BERT Settings DRP Set	ettings Port Setting	gs Sweep Test Sett	ings							
			GTX_X0Y0	GTX_X0Y1	GTX_X0Y2	GTX_X0Y3	GTX_X0Y4	GTX_X0Y5	GTX_X0Y6	GTX_X0Y7		
٩	М	GT Settings										
		MGT Alias	GTX0_112	GTX1_112	GTX2_112	GTX3_112	GTX0_113	GTX1_113	GTX2_113	GTX3_113		
	-	Tile Location	GTX_X0Y0	GTX_X0Y1	GTX_X0Y2	GTX_X0Y3	GTX_X0Y4	GTX_X0Y5	GTX_X0Y6	GTX_X0Y7		
		MGT Link Status	1.527 Gbps	1.527 Gbps	1.527 Gbps	1.527 Gbps	No Link	No Link	No Link	No Link		
	-	MGT Edit Line Rate	1.527 Gbps	1.527 Gbps	1.527 Gbps	1.527 Gbps	1.527 Gbps	1.527 Gbps	1.527 Gbps	1.527 Gbps		
		TX PLL Status	LOCKED	LOCKED	LOCKED	LOCKED	LOCKED	LOCKED	LOCKED	LOCKED		
	-	RX PLL Status	LOCKED	LOCKED	LOCKED	LOCKED	LOCKED	LOCKED	LOCKED	LOCKED		
		Loopback Mode	None 💌	None 💌	None 💌	None 💌	None 💌	None 💌	None 💌	None		
	-	Channel Reset	Reset	Reset	Reset	Reset	Reset	Reset	Reset	Reset		
		TX Polarity Invert										
	-	TX Error Inject	Inject	Inject	Inject	Inject	Inject	Inject	Inject	Inject		
		TX Diff Output Swing	590 mV (0110) 🔻	590 mV (0110) 🔻	590 mV (0110) 🔻	590 mV (0110) 🔻	590 mV (0110) 🔻	590 mV (0110) 🔻	590 mV (0110) 🔻	590 mV (0110) 🔻		
	-	TX Pre-Emphasis	0.15 dB (0000) 🔻	0.15 dB (0000) 🔻	0.15 dB (0000) 🔻	0.15 dB (0000) 🔻	0.15 dB (0000) 🔻	0.15 dB (0000) 🔻	0.15 dB (0000) 🔻	0.15 dB (0000) 🔻		
		TX Post-Emphasis	0.18 dB (000 🔻	0.18 dB (000 🔻	0.18 dB (000 🔻	0.18 dB (000 🔻	0.18 dB (000 🔻	0.18 dB (000 🔻	0.18 dB (000 🔻	0.18 dB (000 🔻		
	-	RX Polarity Invert	v	~	2	2						
	-	RX AC Coupling Enable	v		2	2	~	~	*	1		
	-	RX Termination Voltage	MGTAVTT *	MGTAVTT *	MGTAVTT *	MGTAVTT *	MGTAVTT *	MGTAVTT *	MGTAVTT *	MGTAVTT *		
		RX Equalization	0	0	0	0 🗸	0	0	0	0		
	-	DFEEYEDACMON	51.6 mV	64.5 mV	38.7 mV	45.2 mV	32.3 mV	6.4 mV	83.9 mV	64.5 mV		
		DFETAPOVRD	×	2	2	2	2	2	v	×		
	-	DFETAP1	0	0	0	0	0	0	0	0		
		DFETAP2	0	0	0	0	0	0	0	0		
	-	DFETAP3	0	0	0	0	0	0	0	0		
		DFETAP4	0	0		0	0	0	0	0		
	L	RX Sampling Point		97 0.764 UI	127 1.000 UI							
٩	BE	RT Settings										
	-	TX Data Pattern	PRBS 7-bit 💌	PRBS 7-bit 💌	PRBS 7-bit 💌	PRBS 7-bit 💌	PRBS 7-bit 💌	PRBS 7-bit 💌		PRBS 7-bit		
		RX Data Pattern	PRBS 7-bit 💌	PRBS 7-bit 💌	PRBS 7-bit 💌	PRBS 7-bit 💌	PRBS 7-bit 💌	PRBS 7-bit 💌	PRBS 7-bit 💌	PRBS 7-bit		
	-	RX Bit Error Ratio	2.483E-004	9.650E-005	4.600E-010	4.651E-010	6.500E-001	6.500E-001	6.500E-001	6.500E-001		
		RX Received Bit Count	2.762E011	3.567E011	3.543E011	3.526E011	1.298E012	1.298E012	1.298E012	1.298E012		
	-	RX Bit Error Count	6.858E007	3.442E007	1.630E002	1.640E002	8.434E011	8.435E011	8.435E011	8.436E011		

HSL Stability with the Random Pattern – IBERT Software


Backup


Backup

S ß S Š 8 ₫ **B** DIO-L> Dio-Ci-s Ø Ø ₽ ୍ଷର୍ଚ୍ଚ Ş Ş S Z S () SB DO-C5 Di0<7> \$ ୍ଷ କ୍ଷ **B** (D) DD (V) V) g କ୍ଷ AR N MEN z **\$ B** 5 P S Ş **B** 0 SH F) Dijes-900 ୍ଷ କୁ ଅନ୍ତି Ø Ş ର୍ଚ୍ଚ ଅ g WORTAGE COMNECTIONS ODD Z € ୍ଦୁର୍ଚ୍ଚ ଅନ **D** S P **D** SS Ş ð ୍ଷିତ୍ର CIJ (D) SS ෂු (D) DD 02<5> 0242 ର୍ଚ୍ଚ ଅ 9 ≶ MOLTAGE CONNECTIONS BIGHTAL BONNECHONS DOD VRE 5 © ₽ ଞ ð 5 ð Q G G G G G S S Ci3<€> \$ **B** Ø ആ 6 R N) 3 ð **S** DI4-S> DI465 **7** \$ (Notest 8 ୍ଷର୍କୁ ଅ RO(VZ) SI DES)CLK_P ∰ C E E F P DIS-OS Ø ₽ **B** PAD_IDAGTEST_OUFAG_COMP Ś P Ş ð PAD(IRE_OUT р<mark>у</mark>р XII TW 015<7> 0 (D) 05<5 § ୍ଷି କ **B** \$ 8 PAD_RE_C SER OLK P 0 (P) CP Dig₄₀> Ŭ<mark>@</mark>∠¦> **Di6**<3> Ø **S** (D) SS P Ø € A S **D** Ð PAD VEXIL P[]]ISOU P RAME SER D ð 06<7> Ø ର୍ଚ୍ଚ ଅନ 0665 06€5> Ş **D** S ୍ଷ କୁ PAD HBO XLI SO 0 (T) đ Ø) 49 **B D** SS **D** SS ANDD 3 PAP_YCM PAD IEXTO AI SON 3 Ø ً AD (A) SS 8 bije S 57 ୍ଷ କ 8 (V) V) G

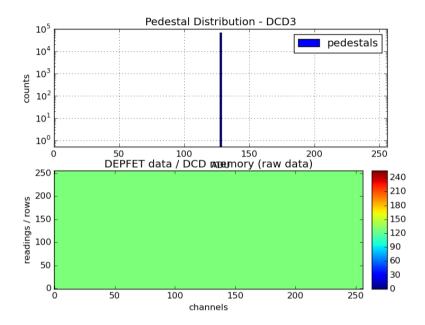
Backup

HTT Solution v1.0

Voltages and Current Consumptions

- Planarity test (needles pads).
- Test with a non populated EMCM (Voltage connections sensed).
- Simulation of a problem in a sense line needle.
- Test with populated EMCM Check of the current consumption values.

Sense Line	
Voltage Line	
	Asic


Name:	\mathbf{R}_{val} (Ω):	\mathbf{V}_{appl} (V)	\mathbf{V}_{reg} (V)	\mathbf{V}_{ASIC} (V)	C (mA)	Name:	\mathbf{R}_{val} (Ω):	\mathbf{V}_{appl} (V)	\mathbf{V}_{reg} (V)	\mathbf{V}_{ASIC} (V)	C (mA)
DHP core	12	1.62	1.88	1.74	145	DHP core	12	1.62	2.16	1.99	165
DHP core	12	1.2	1.43	1.32	111	DHP core	12	1.2	1.64	1.52	127
DHP core	2	1.62	2.1	1.64	489	DHP core	2	1.62	2.16	1.65	500
DHP core	2	1.2	1.6	1.23	370	DHP core	2	1.2	1.64	1.26	391
DHP io	12	1.8	2.04	1.9	157	DHP io	12	1.8	2.37	2.2	180
DHP io	2	1.8	2.2	1.77	535	DHP io	2	1.8	2.35	1.86	562
DCD DVDD	12	1.8	2.02	1.9	160	DCD DVDD	12	1.8	2.37	2.24	185
DCD DVDD	2	1.8	2.16	1.77	535	DCD DVDD	2	1.8	2.37	1.94	587
Source	390	7	7.2	7.25	18	Source	390	7	8.79	8.7	22
Source	290	7	7.28	7.25	26	Source	290	7	8.1	8.1	27 (limit)
DCD AVDD	82	1.9	2.16	2.15	27	DCD AVDD	82	1.9	2.62	2.59	34
DCD AVDD	12	1.9	2.21	2.1	175	DCD AVDD	12	1.9	2.6	2.49	206
DCD AVDD	2	1.9	2.38	2.0	610	DCD AVDD	2	1.9	2.6	2.2	665

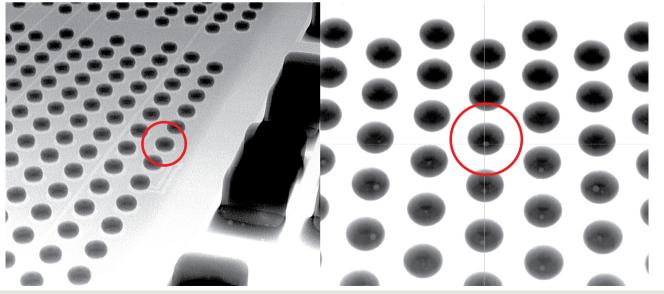
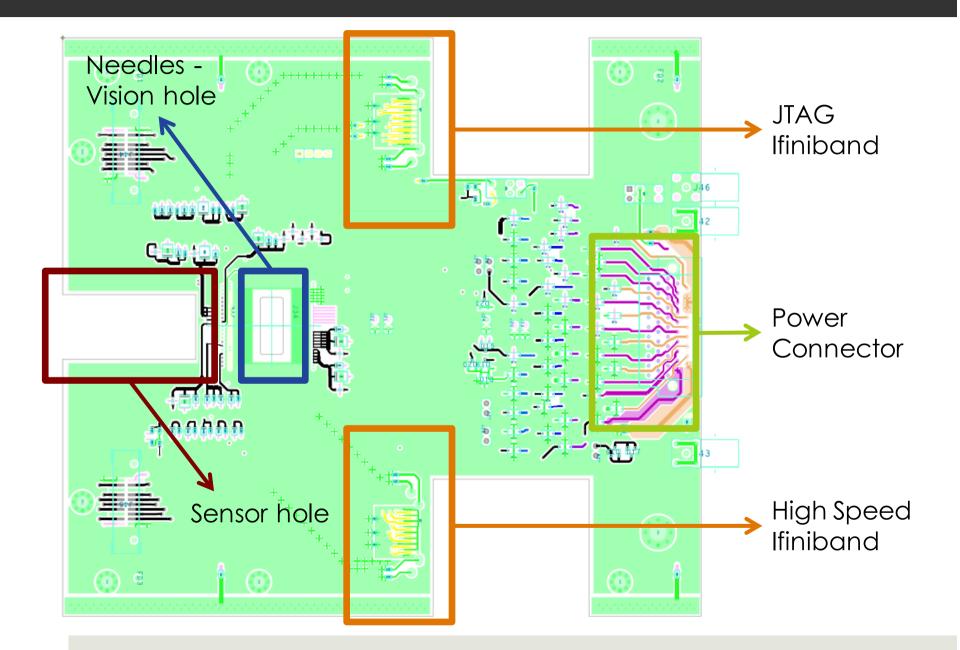

Table 1: Values measured with sensed lines connected.

Table 2: Values measured without sensed lines.


Boundary Scan – EMCM W17-4

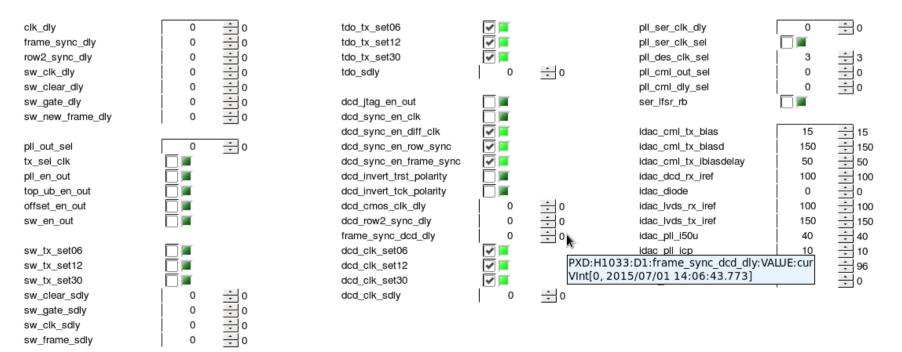
- Problem also detected reading out data
- Reason for this massive fault problem in the reference voltage.
- X-Ray test does not show any problem with the bumps involved.

EMCM Design

EMCM Needle Card Test & Performance

- Voltages applied and current consumptions measured.
- Slow control and boundary scan.
- High speed link stability.

Voltages and Current Consumptions


- Planarity test (needles pads).
- Test with a non populated EMCM (Voltage connections sensed).
- Test with populated EMCM Check of the current consumption values.

min.	Set Voltage	max. I	Reg.	Voltage at Regulator	Voltage at Load	Current	
0 mV	0 mV	0 mV		-130 mV	-139 mV	2 mA	sw-sub
0 mV	1800 mV	2000 mV		2296 mV	1799 mV	27 mA	sw-dvdd
0 mV	0 mV	0 mV		-918 mV	1399 mV	-2 mA	sw-refin
0 mV	400 mV	500 mV		545 mV	405 mV	0 mA	dcd-amplow
0 mV	1900 mV	2000 mV		2016 mV	1897 mV	41 mA	dcd-avdd
0 mV	1800 mV	2000 mV		2615 mV	1796 mV	303 mA	dcd-dvdd
0 mV	1200 mV	1300 mV		1262 mV	1202 mV	1 mA	dcd-refin
			_				
0 mV	1200 mV	1640 mV		2015 mV	1200 mV	252 mA	dhp-core
0 mV	1800 mV	2000 mV		2732 mV	1801 mV	180 mA	dhp-io
0 mV	0 mV	10000 mV		4 mV	-6 mV	-1 mA	bulk
0 mV	0 mV	22000 mV		-11 mV	28 mV	-1 mA	clear-on
0 mV	0 mV	20000 mV		-21 mV	27 mV	0 mA	clear-off
-4000 mV	0 mV	3000 mV		1 mV	4 mV	0 mA	gate-on1
-4000 mV	0 mV	3000 mV		-3 mV	1 mV	0 mA	gate-on2
-4000 mV	0 mV	3000 mV		0 mV	1 mV	0 mA	gate-on3
0 mV	0 mV	6000 mV		-244 mV	-2 mV	-1 mA	gate-off
0 mV	0 mV	7000 mV		375 mV	-38 mV	3 mA	source

Slow Control and Boundary Scan.

- Using the automatic configuration script, configure the chips.
- Change, write & read some parameters via JTAG i.e: pll_ser_clk_sel (1→3).
- Infrastructure test.

Interconnection test.

