

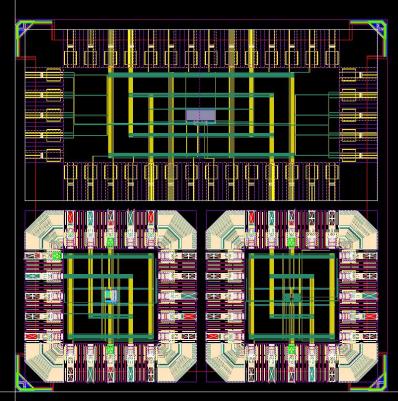
edet: Depfet Movie Chip (DMC) Status

20th International Workshop on DEPFET Detectors and Applications

11.-14.05.2014 Kloster Seeon

DMC keypoints

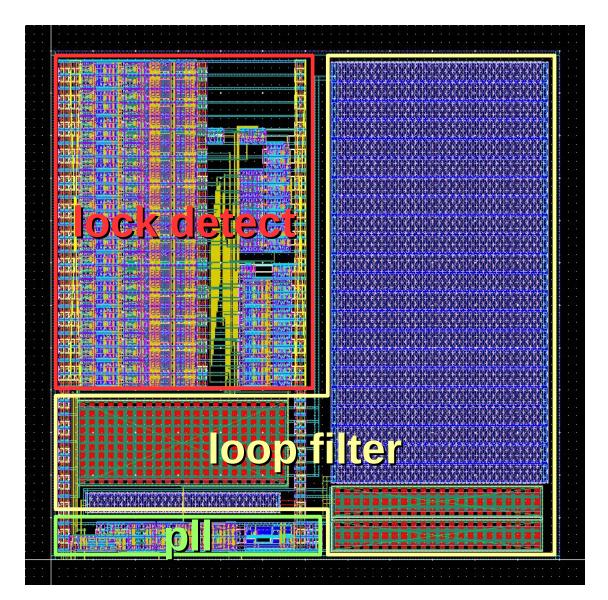
- Capturing up to 100 full pictures (512x64x100x8bit = 26Mbit) implemented via single port SRAM IP (TSMC)
- footprint compatible to DHP (new pins located in the not assigned pin area)


 \rightarrow TSMC 40nm technology \rightarrow reuse of DHP IP not possible

• 6 "slow" serial downlinks with 200Mbit (for edet only 4 will be used)

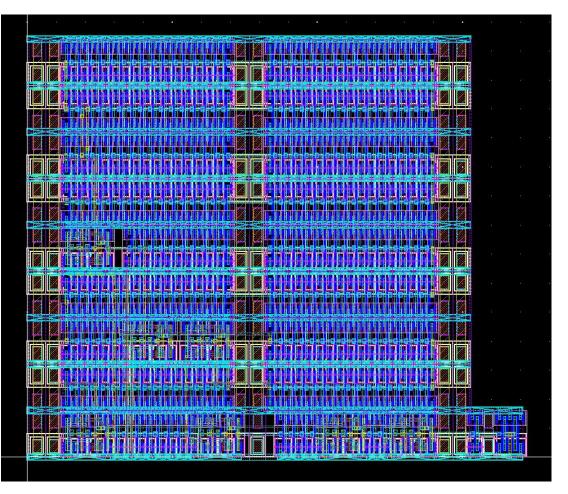
Technology test chip submission

- DMC:
 - v0.1 submitted via miniasic run, 3 subasic's
 - optimized 1:4 PLL for 320MHz generation and digital lock detection
 - io-delay subcircuit for adaption of the different wire length on the module (128 steps)
 - dual port memory for verification of the ip integration flow
 - bond pitch 100µm with 63x60µm standard lib bond pad
 - these miniasic run was already very helpful for establishing the whole tech. dependent design flow (IP integration..



1:4 pll

- 60x60 mm^2
- vco up to 2GHz
- dynamic circuit technique for high speed flipflops in internal clock divider and phase detector
- digital lock detect
- ~2µs lock time

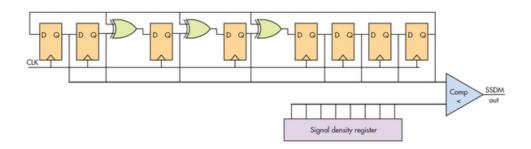

 (2,5 day for single simulation with extracted parasitic's)

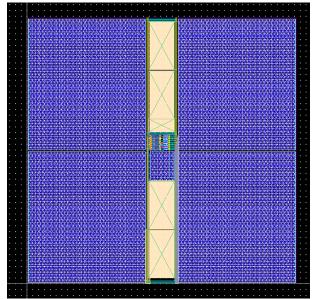
delay7

- 128 steps (~65ps)
- signal duty cycle 48-52%
- 30x30µm^2
- integration between core and io padring

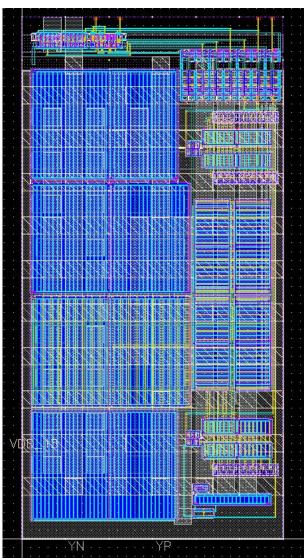
DMC MiniAsic test

- Done via the MAT board
- $80 \rightarrow 320$ MHz clk pll working
 - jitter slightly higher as aspected from simulation
 - standard io cells with 320MHz on the edge of the spec
- Delay unit working
 - Width freq range tested, stable delay (range up to 4.2ns in 128 steps)
 - Balanced duty cycle of the output signal
- memory
 - 1k * 4bit dual port configuration tested
 - Working as aspected in the speed range given by the limitations of the MAT board
 - \rightarrow all subchips on the DMC miniasic v0.1 are working
 - → results of the time consuming parasitic simulation fits in Range >95% to the measurements




design inputs from the DHP tests

- more but shorter JTAG user chains for improved accessibility of controll regs
- improved low voltage swing io cells for DCD communication with dual mode operation (also usable as standard LVDS cell)
 - SSDM based DAC for JTAG controlled adjustment of the DCD common


mode voltage (230x230µm²)

current and short term next topic's

- cell layout of the low voltage swing cells
 - directly attached to the standard analog io cell
 - verification together with the related DCD circuits with full parasitics and line model
- Integration of the LVDS cell into the synthesis flow
- finalization of the DMC VHDL model and system verification

timeline estimate

- "LVDS" io layout and integration into the "empty" analog io cells with esd structures (3MW)
 - integration of the custom layout cells into the synthesis flow (characterisation, lef,defdefinition) (2-?MW)
- finalization of the digital system and verification against the external models (dcd, switcher, jtag, ...) (6-8MW)
- logic synthesis (optimization for speed and power goals) (2-3MW)
- layout synthesis (extensive power and clock verification) (4-6MW)
- final chip assembly (3-4MW)
 - standard io pads for testing in the io ring in parallel to the bump balls
 - full chip drc, lvs and extraction, metal fill , (2+...MW)
 - final verification of the extracted circuit (4+...MW)

best case 26MW

Thank you