Search for the higgs boson decays $H \rightarrow Z Z^* \rightarrow 4 I$

4. Februar 2009

Julian Taylor (TUM)

Outline

Higgs particle

- Higgs mechanism
- Higgs boson production
- Higgs boson decays
- Higgs to $ZZ^{(*)}$ Decay

2 Detection of the Higgs Bosons

- Background
- Background reduction
- Higgs mass reconstruction
- Event selection results
- Significance

Higgs-Brout-Englert-Guralnik-Hagen-Kibble mechanism

- $SU(2)_L \times U(1)_Y$ gauge invariance of the electroweak theory forbids massive gauge bosons and fermion masses.
- Solution: spontaneous symmetry breaking: $SU(2)_I \times U(1)_Y \rightarrow U(1)_{em}$ by inserting a complex scalar field with negative mass term. $V = -\mu^2 \phi^+ \phi + \lambda (\phi^+ \phi)^2$
- The coupling of the scalar field to the fermions and bosons allows to insert boson mass terms into the Standard Model Lagrangian.
- Predicts the mass relation between the W and Z gauge bosons.

Higgs boson properties

- The gauge boson of the scalar field is called the Higgs particle.
- Higgs boson self coupling gives mass to the boson: $m_H = \sqrt{2\lambda}v$; with vacuum expectation value v = 246 GeV
- Higgs self coupling parameter λ is a free parameter which needs to be determined by experiment.

Upper boundary

- The upper boundary for the higgs boson mass given by the renormalization group equation: $\frac{d\lambda}{d \ln \frac{s}{s_0}} = 1/2\beta = \frac{1}{16\pi^2} \left(12\lambda^2 + 12\lambda g_t^2 - 12g_t^4 + gaugeterms \right)$
 - Landau pole Λ dependent of higgs mass $m_H = 114 GeV : \Lambda \approx 10^{19} GeV$ $m_H \ge 800 GeV : \Lambda \approx 1 TeV$

Lower boundary

- $\frac{d\lambda}{d\ln\frac{s}{s_0}} = 1/2\beta = \frac{1}{16\pi^2} \left(12\lambda^2 + 12\lambda g_t^2 12g_t^4 + gaugeterms\right)$
- For small λ the running coupling is dominated by the yukawa term of the top quark.
- λ must remain positive at all scales or else the vacuum potential has no lower bound.

Theoretical boundaries

Experimental boundaries

- Experimental boundaries available through direct LEP and Tevatron searches.
- Lower bound by direct search: $m_H = 114 GeV$ (LEP)
- Standard Model observables influenced by higgs mass per radiative corrections.

Experimental boundaries

Experimental boundaries

• Combination of all measured parameters give a probable higgs mass: $m_H = 84^{+34}_{-26} GeV$ at 68% confidence level.

Julian Taylor (TUM)

Production processes at the LHC

Production processes at the LHC

• Cross section computable in terms of higgs mass.

Julian Taylor (TUM)

Higgs boson decay processes

Branching rations

• Branching ratios computable in terms of m_H

Julian Taylor (TUM)

Higgs decay width

Higgs to $ZZ^{(*)}$ Decay

- Higgs decay in two Z bosons has high branching ration for higgs masses > 114 GeV
- Decay of Z bosons to electron and muon pairs have a clear signature in the detector.
- If higgs mass $< 2M_Z$ it can decay over one real and one virtual Z boson.

$ZZ^{(*)}$ invariant mass

Higgs particle

- Higgs mechanism
- Higgs boson production
- Higgs boson decays
- Higgs to *ZZ*^(*) Decay

2 Detection of the Higgs Bosons

- Background
- Background reduction
- Higgs mass reconstruction
- Event selection results
- Significance

Irreducible background

• ZZ background which isn't distinguishable from a higgs signal.

- Cross section higher than higgs cross section but evenly distributed over a wide energy range.
- Events in expected higgs region are an order of magnitude lower than the higgs events.

Julian Taylor (TUM)

Reducible background

 Background processes with lepton end states have non neglible cross sections in the higgs region.

Background reduction

 Reducible background processes have a different signature than the higgs decays.

• Possible reduction by data analysis and triggers.

Trigger efficiency

 Trigger selects events with at least one muon with p_T > 20 GeV or at least one isolated electron with p_T > 22.

• Trigger captures higgs and background events with an efficiencies greater than 95%.

Electron offline reconstruction

- The electron reconstruction sets certain quality restraints on the electron signals: cluster shape, shower shape, track association with clusters, track quality.
- LooseElectron definition less strict than MediumElectron. Used for electrons from heavz higgs decays with high p_T .

Muon offline reconstruction

- Muon reconstruction combines hits in the muon spectrometer and the inner detector.
- Tracks which can't be reconstructed completely in the muon spectrometer are extrapolated from the inner detector.

Event preselection

- Electrons must satisfy MediumElectron conditions. If higgs mass is greater than $180 GeV/c^2$ the LooseElectron condition is enough.
- Require two Leptons pairs of same flavour and opposite charge which have $p_T > 7 GeV/c$ and at least two leptons must have $p_T > 20 GeV/c$.

25 / 39

Event preselection

Track isolation

- In *Zbb* and *tt* background processes muons originate from semileptonic b quark decays.
- These leptons are surrounded by jets.
- The leptons from Z decays are isolated.
 - Calculate the sum of the energy and momenta in a cone excluding the lepton.
 - Cone size $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$
 - $M_E = max_{i=1..N} (\sum E_T)_i$
 - $M_p = max_{i=1..N} (\sum p_T)_i$

Background reduction

Track isolation

Invariant mass selection

• Invariant mass of at least two leptons from real Z decays are distributed around 91GeV.

• Allows cut to reduce $t\bar{t}$ background. $Zb\bar{b}$ not reducible because of

Julian Taylor (TUM)

Invariant mass selection

- Invariant mass of other lepton pair reduces background further because jet leptons have lower energies.
- If the higgs mass allows two real Z bosons, reduction increases due of the sharper mass distribution.

Impact parameter

• Background processes involving b quark jets come from displaced vertices because of the comparably high lifetime of the b quarks.

Impact parameter

- Knowledge of primary vertex not known and impact parameter measurement is imprecise.
- A fit of the lepton tracks to a primary vertex increases precision.
- Background rejection possible by discriminating at certain values of the distance of tracks to the vertex.

x (cm)

Impact parameter

• Electron impact parameter measurement is less precise because of higher bremsstrahlung.

Higgs mass reconstruction

- Invariant mass of lepton quadruplet equals higgs mass distribution.
- Invariant mass of electron quadruplet biased to lower masses because of Bremsstrahlung and lower E_T resolution.

- Further background reduction possible by defining a signal region around higgs mass.
- $|M_{I/1} M_Z| < \Delta M_{12}, \quad M_{I/2} > M_{34}$

Event selection results

• Combination of all methods allow it to decrease the reducible background to values lower than the irreduclibe background.

Selection cut	Signal [%]			
	4 <i>e</i>	4 μ	$2e4\mu$	
Trigger selection	94.7	95.3	95.7	
Lepton preselection	57.0	73.8	66.8	
Lepton quality & p_T	24.7	60.5	39.7	
Z mass cuts	17.1	42.9	27.6	
Track isolation	16.5	38.1	24.7	
Impact parameter	15.1	36.5	23.2	
H mass cut	12.5 ± 0.3	31.4 ± 0.5	19.2 ± 0.4	

Event selection results

 $Zb\bar{b} \to (\mu\mu)(b\bar{b}) \to (\mu\mu)(\mu j)(\mu j)$

Selection cut	ZZ [%]		Zbb [%]			
	4 <i>e</i>	4μ	$2e4\mu$	4 <i>e</i>	4μ	$2e4\mu$
Trigger selection	96.6	96.6	96.6	91.4	91.4	91.4
Lepton preselection	13.8	17.6	31.4	2.6	9.4	12.0
Lepton quality & p_T	7.3	16.0	21.9	0.11	2.1	1.7
Z mass cuts	6.9	14.8	20.2	0.047	0.085	0.12
Track isolation	6.8	13.6	19.2	0.013	0.033	0.044
Impact parameter	6.2	13.0	17.8	0.0056	0.011	0.018
H mass cut	0.052	0.13	0.12	0.0016	0.0012	0.030

Event selection results

 $t\bar{t} \rightarrow (Wb)(W\bar{b}) \rightarrow (\mu\nu)(\mu j)(\mu\nu)(\mu j)$

Selection cut	tī [%]				
	4 <i>e</i>	4μ	$2e4\mu$		
Trigger selection	75.1	75.1	75.1		
Lepton preselection	1.0	4.7	10.1		
Lepton quality & p_T	0.0068	0.73	0.58		
Z mass cuts	0.0016	0.20	0.10		
Track isolation	0.00026	0.00025	0.001		
Impact parameter	0.00026	< 0.0006	0.00026		
H mass cut	< 0.0006	< 0.0006	< 0.0006		

Event selection result

Significance

- Around 20 higgs signals expected with $30 fb^{-1}$ (about 3 years)
- Significance greater 5 expected for most higgs masses. 160GeV significance low because of the decrease in the branching ratio due to the W resonanz.

