Dark Matter in the Milky Way

Fabío Iocco

ICTP-SAIFR IFT-UNESP São Paulo

International Centre for Theoretical Physics South American Institute for Fundamental Research MPP, Munich 24/05/16

CMB, a dark matter probe

CMB2: power spectrum

 ω_{m} and ω_{bar} from CMB only

The "Bullet Cluster" 1E 0657-558

Z = 0.296

collision in the plane of the sky

[Markevitch et al. '06]

The "Bullet Cluster" 1E 0657-558

Spiral Galaxies rotation curves: the evergreen classic

discrepancy between observed and predicted (from visible matter only)

DM distribution is a crucial ingredient of LCDM

(well motivated) hints from numerical simulations What can we learn from astrophysics (about DM?)

- DM is there, at different scales
 (≈100 Mpc, ≈1Mpc, ≈10kpc)
- Upper limits on DM coupling to the baryons
 - Upper limits on the DM coupling to itself
 - Upper limits on the "warmth" of DM

Direct and indirect searches of WIMP DM complementary to colliders

Constraining DM nature with local observables (InDirect searches of WIMP DM)

InDirect searches of WIMP DM:

Galactic center, Dwarf Galaxies, Galactic Halo... dependence on density structure discovery (or constraints) subject to same uncertainty

$$F = \frac{1}{2} \frac{1}{4\pi d^2} \frac{N_{\gamma} \langle \sigma v \rangle}{m_{\chi}^2} \int_{0}^{R} \rho^2(r) d^3r$$

Direct searches of WIMP DM:

Look at phonons/ionizations/scintillations

A detector (underneath)

Direct searches of WIMP DM:

from this

to this

you have to use this

Velocity distribution properties of DM DM density at the Sun's location, ρ_0

A schematic view of the Galaxy

[shamelessly stolen from M. Pato, without asking]

DM distribution is a crucial ingredient of LCDM

(well motivated) hints from numerical simulations

DM density at the Sun: $\rho_0 = ?$

We know there is "little" DM here, But how little?

Determination of local DM density ρ_0

Local observables (e.g. Garbari et al.)

VS

global modelling of MW (e.g. Catena & Ullio)

Give consistent results

Local determination of ρ_0

Vertical motion of stars, determining the whole local potential

Local determination of ρ_0

Subtracting local baryonic (stellar) contribution to get DM (no implicit assumption on DM presence)

Global kinematic methods: fitting halo shapes

Fitting a DM profile on top of baryons: $\rho_{DM} = \rho_0 R^{\alpha}$

Global determination of $\rho(r)$

Fitting a DM profile to the Rotation Curve, on top of other components

Underlying assumption on DM presence and distribution shape

Determination of local DM density ρ_0 a historical perspective

Dark Matter in the Milky Way: a purely observational approach

Fabío Iocco

In collaboration with <u>Míguel Pato</u>, G. Bertone

The case of the Milky Way: ingredients

- The observed rotation curve
- The "expected" rotation curve
- Some "grano salis"
- Working hypothesis (later on)

The case of the Milky Way: the question

$$\Phi_{\text{tot}} = \Phi_{\text{bulge}} + \Phi_{\text{disk}} + \Phi_{\text{gas}} ??$$

[can the observed, luminous components make up to the whole gravitational potential?]

$$v_c^2 = r rac{d \phi_{
m tot}}{dr}$$

Rotation curve as a tracer of the total potential

...and if not...

The Milky Way: observed rotation curve I. principles

$$v_{ ext{LSR}}^{ ext{l.o.s.}} = \left(rac{v_c(R')}{R'/R_0} - v_0
ight) \cos b \sin \ell$$

observing tracers from our own position, transforming into GC-centric reference frame

The Milky Way: observed rotation curve II. tracers

The Milky Way: observed rotation curve III. curve

Data compilation by [Sofue et al, '08]

The Milky Way: observed rotation curve II'. data again (a new compilation)

	Object type	n [kpc]	quadrants	# objects
-	HI terminal velocities			
	Fich+ '89	2.1 - 8.0	1,4	149
	Malhotra '95	2.1 - 7.5	1,4	110
	McClure-Griffiths & Dickey '07	2.8 - 7.6	4	701
	HI thickness method			
	Honma & Sofue '97	6.8 - 20.2	_	13
	CO terminal velocities			
gas	Burton & Gordon '78	1.4 - 7.9	1	284
	Clemens '85	1.9 - 8.0	1	143
	Knapp+ '85	0.6 - 7.8	1	37
	Luna+ '06	2.0 - 8.0	4	272
	HII regions			
	Blitz '79	8.7 - 11.0	2.3	3
	Fich+ '89	9.4 - 12.5	3	5
	Turbide & Moffat '93	11.8 - 14.7	3	5
	Brand & Blitz '93	5.2 - 16.5	1.2.3.4	148
	Hou + '09	3.5 - 15.5	1.2.3.4	274
	giant molecular clouds		_,_,_,_	
	Hou+ '09	6.0 - 13.7	1,2,3,4	30
-	open clusters			
	Frinchaboy & Majewski '08	4.6 - 10.7	1,2,3,4	60
	planetary nebulae			
	Durand+ '98	3.6 - 12.6	1,2,3,4	79
atona	classical cepheids			
stars	Pont+ '94	5.1 - 14.4	1,2,3,4	245
	Pont+ '97	10.2 - 18.5	2,3,4	32
	carbon stars			
	Demers & Battinelli '07	9.3 - 22.2	1,2,3	55
	Battinelli+ '13	12.1 - 24.8	1,2	35
-	masers			
	Reid+ '14	4.0 - 15.6	1,2,3,4	80
	Honma+ '12	7.7 - 9.9	1,2,3,4	11
masers	Stepanishchev & Bobylev '11	8.3	3	1
	Xu+ '13	7.9	4	1
_	Bobylev & Bajkova '13	4.7 - 9.4	1,2,4	7

The Milky Way: observed rotation curve IV. public tool: Galkin

Customizable galactic parameters (R_0, V_0) peculiar motions, etc...

Available soon: reserve your copy now!

[Pato & FI. soon]

galactic parameters V0 [km/s]= 230.0 syst [km/s]= 0.0 R0 [kpc]= 8.0 Usun [km/s]= 11.10 Vsun [km/s]= 12.24 Wsun [km/s]= 07.25 data to use HI terminal velocities open clusters Fich+ 89 (Table 2) Frinchaboy & Maiewski 08 Malhotra 95 olanetary nebulae McClure-Griffiths & Dickey 07 ✓ Durand+ 98 HI thickness Classical cepheids Honma & Sofue 97 Pont+ 94 Pont+ 97 CO terminal velocities Burton & Gordon 78 carbon stars Clemens 85 Demers & Battinelli 07 Knapp+ 85 ✓ Battinelli+ 12 ✓ Luna+ 06 masers HII regions Reid+ 14 Blitz 79 Honma+ 12 Fich+ 89 (Table 1) Stepanishchev & Bobylev 11 ✓ Turbide & Moffat 93 **√**Xu+13 Srand & Blitz 93 Sobylev & Bajkova 13 Hou+ 09 (Table A1) 🗹 giant molecular clouds

Hou+ 09 (Table A2)

OK

The Milky Way Rotation Curve as observed

All tracers, optimized for precision between R=3-20 kpc

Modeling the Milky Way: morphological observations

The Milky Way: expected rotation <u>curve</u>

$$\Phi_{\text{baryon}} = \Phi_{\text{bulge}} + \Phi_{\text{disk}} + \Phi_{\text{gas}}$$

$$ho_i(x,y,z) o \phi_i(r, heta,arphi) o v_{c,i}^2(R) = \sum_arphi R rac{d\phi_i}{dr}(R,\pi/2,arphi)$$

Constructing the curve expected from observed mass profiles

The Milky Way: expected rotation curve 1. the baryonic components

The luminous Milky Way: observations of morphology

2. DARIONS. SIELLAR BULGE	2.	BARY	ONS:	STELLAR	BULGE
---------------------------	----	------	------	---------	-------

$$ho_{
m bulge}=
ho_0f(x,y,z)$$

morphology f(x, y, z)Stanek+ '97 (E2) e^{-r} 0.9:0.4:0.3 24° optical $e^{-r_{s}^{2}/2}$ 1.2:0.6:0.4 25° Stanek+ '97 (G2) optical $e^{-r_s^2/2} + r_a^{-1.85}e^{-r_a}$ 20° Zhao '96 1.5:0.6:0.4infrared Bissantz & Gerhard '02 $e^{-r_s^2}/(1+r)^{1.8}$ 2.8:0.9:1.1 20° infrared 43° infrared/optical Lopez-Corredoira+ '07 Ferrer potential 7.8:1.2:0.2 Vanhollebecke+'09 $e^{-r_s^2}/(1+r)^{1.8}$ 2.6:1.8:0.8 15° infrared/optical $\mathrm{sech}^2(-r_s) + e^{-r_s}$ 1.5:0.5:0.4 13° Robin+ '12 infrared

normalisation ho_0 microlensing optical depth: $\langle \tau \rangle = 2.17^{+0.47}_{-0.38} \times 10^{-6}$, $(\ell, b) = (1.50^{\circ}, -2.68^{\circ})$ (MACHO '05) The luminous Milky Way: observations of morphology

2. BARYONS: STELI	LAR DISK	0	0				
	$ ho_{ m disk} = ho_0 f(x,y)$	(, <i>z</i>)					
morphology $f(x, y, z)$							
Han & Gould '03	$e^{-R} \mathrm{sech}^2(z) \ e^{-R- z }$	2.8:0.27 2.8:0.44	thin thick	optical			
Calchi-Novati & Mancini '11	$e^{-R- z }$ $e^{-R- z }$	2.8:0.25 4.1:0.75	thin thick	optical			
deJong+ '10	$e^{-R- z } e^{-R- z } (R^2+z^2)^{-2.75/2}$	2.8:0.25 4.1:0.75 1.0:0.88	thin thick halo	optical			
Jurić+ '08	$e^{-R- z } e^{-R- z } (R^2+z^2)^{-2.77/2}$	2.2:0.25 3.3:0.74 1.0:0.64	thin thick halo	optical			
Bovy & Rix '13	$e^{-R- z }$	2.2:0.40	single	optical			

normalisation ρ_0

local surface density: $\Sigma_* = 38 \pm 4 M_{\odot}/pc^2$ [Bovy & Rix '13]

The luminous Milky Way: observations of morphology

 $\begin{array}{l} \text{uncertainties} \\ \text{CO-to-H}_2 \ \text{factor:} \ X_{\text{CO}} = 0.25 - 1.0 \times 10^{20} \ \text{cm}^{-2} \ \text{K}^{-1} \ \text{km}^{-1} \ \text{s} \ \text{for} \ r < 2 \ \text{kpc} \\ \\ X_{\text{CO}} = 0.50 - 3.0 \times 10^{20} \ \text{cm}^{-2} \ \text{K}^{-1} \ \text{km}^{-1} \ \text{s} \ \text{for} \ r > 2 \ \text{kpc} \end{array}$

[Ferrière+ '07, Ackermann '12]

The luminous Milky Way: expected rotation curve

$$egin{aligned} egin{aligned} \phi_i(r, heta,arphi) = -4\pi G \sum_{l=m} rac{Y_{lm}(heta,arphi)}{2l+1} \left[rac{1}{r^{l+1}} \int_0^r egin{aligned}
ho_{i,lm}(a) a^{l+2} da + r^l \int_r^\infty egin{aligned}
ho_{i,lm}(a) a^{1-l} da
ight] \end{aligned}$$

The Milky Way: testing expectactions

The Milky Way: testing expectactions (with no additional assumptions)

[Iocco, Pato, Bertone, Nature Physics 2015]

The Milky Way: testing expectactions (with no additional assumptions) ((and some technical detail))

- Computing the "badness-of-fit" (discrepancy) of each baryon rot. curve (no DM!!) to observed one
- One COULD bin (and we have done it) but loss of information: using 2D chi-square (uncertainties on R, as well)

$$\chi^2 = \sum_{i=1}^{N} d_i^2 \equiv \sum_{i=1}^{N} \left[\frac{(y_i - y_{b,i})^2}{\sigma_{y,i}^2} + \frac{(x_i - x_{b,i})^2}{\sigma_{x,i}^2} \right]$$

Do the baryon-only curves fit with the observed RC?

Every single model above 5 σ , already at R<R₀!!

[Iocco, Pato, Bertone, Nature Physics 2015]

Some performed checks (please do ask for details)

- Variation of Galactic parameters
- (De)selection of tracer class / datasets
- Spiral Arm systematics
- Binning (/averaging/statistics)
- Lower Radius cut (asymm. effects from bulge/bar)
- <u>Of course</u>, different (heavier) normal. of baryonic comp.
- Whatnot...

I forgot something? You got a problem? email me at

iocco@ift.unesp.br

before posting on arXiv (and perhaps read the paper first)

The Milky Way:

Evidence for Dark Matter ??

Discrepancy between: observed rotation curve and observation-based expectations

assuming Newton's law of gravity

Ansatz for the following is that same physics is valid at all scales (remember Clusters and CMB)

Modified Newtonian Dynamics?

recovering Newton in "strong" gravity regime **₹**^{10²} u=µ $\mu_{\rm std}(x) = x/\sqrt{1+x^2}$ 10 5σ external galaxies [Iocco, Pato, Bertone, to appear] ×10⁻⁰ 10⁻¹L 0.2 0.4 0.6 0.8 a₀ [m/s²]

 $\mu(a/a_0)$ analytical fit to data, not from first principles

Motivating dark haloes

 $v_{\text{Residual}} = (v_{\text{tot}}^2 - v_{\text{bar}}^2)^{1/2}$

The Milky Way: Dark Halos

NFW profile $\rho_{DM}(r) = \overline{\rho_s} \left(\frac{r}{r_s}\right)^{-\alpha} \left(1 + \frac{r}{r_s}\right)^{-3+\alpha}$ Einasto profile

$$\rho_{DM}(r) = \overline{\rho_s} \exp\left[-\frac{2}{\alpha}\left(\left(\frac{r}{r_s}\right)^{\alpha} - 1\right)\right]$$

Spherical profiles suggested by simulations

Adding Dark Matter: fitting halo shapes

Fitting a DM profile on top of baryons: $\rho_{DM} = \rho_0 R^{\alpha}$

Global determination of halo parameters

Fitting a DM profile to the Rotation Curve, on top of other components

Underlying assumption on DM presence and distribution shape

The Milky Way: fitting Dark Halo parameters

Excellent agreement with simulation parameter space, And determination of ρ_0 [FI, Pato et al., 2011]

The Milky Way: spherical halos on top of baryonic models

scanning halo parameter space for each baryonic model

The Milky Way: the importance of baryon modelling

The Milky Way: the importance of baryon modelling

Why should a theorist care?

[Feng, Profumo, Ubaldi, 2014]

Why should a theorist care?

[Bernàl, Bozorgnia, Calore, FI, work in progress]

The Milky Way's backbone: an agnostic approach reconstructing the profile from observations alone no assumptions on the shape of the profile

$$v_{\rm dm}^2 = GM_{\rm dm}(<\!\!R)/R$$

$$\omega_{\rm dm}^2 = \omega_c^2 - \omega_{\rm b}^2$$

$$\mathrm{d}\phi_{\mathrm{tot}}/\mathrm{d}R\,=\,\omega_c^2 R$$

$$\mathrm{d}\phi_\mathrm{b}/\mathrm{d}R\,=\,\omega_\mathrm{b}^2R$$

Assumption of spherical symmetry

$$\rho_{\rm dm} = \frac{1}{4\pi G} \left(3\,\omega_{\rm dm}^2 + R\,\frac{{\rm d}\omega_{\rm dm}^2}{{\rm d}R} \right)$$

"The DM profile of the MW, a non-parametric reconstruction" Pato and FI, ApJL 2015

The Milky Way's backbone: an unbiased reconstruction

"The DM profile of the MW, a non-parametric reconstruction" Pato and FI, ApJL 2015

CUNCTA STRICTE

- Model-independent, assumption-free analysis
 - Based on observational data only
 - DM "not included"
 - Evidence for <u>discrepancy</u> between <u>Observed</u> and <u>theoretical</u> ^(obs. infer.) RC
 5 σ at R < R₀ (inner Galaxy)
 Analysis is solid against galactic parameter
 - variation and systematics

IN PROGRESS

• Determination of (ρ_0, α) with different galactic configurations

• Direct determination of DM profile

Impact on particle physics determination
 FUTURUS

Generalization to non-spherical profiles

Test adiabatic contraction (spike)