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Outline 
1) Brief review of HEP context and statistical tests. 

2)  Statistical tests based on the profile likelihood ratio 

3)  A measure of discovery sensitivity is often used to plan a future  
analysis, e.g., s/√b, gives approximate expected discovery  
significance (test of s = 0) when counting n ~ Poisson(s+b).  A  
measure of discovery significance is proposed that takes into  
account uncertainty in the background rate. 

4)  Brief comment on importing tools from Machine Learning & 
choice of variables for multivariate analysis 
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Data analysis in particle physics 
Particle physics experiments are expensive 

   e.g. LHC, ~ $1010   (accelerator and experiments) 

the competition is intense 
   (ATLAS vs. CMS) vs. many others 

and the stakes are high: 

4 sigma effect 

5 sigma effect 

Hence the increased interest in advanced statistical methods. 
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Prototypical HEP analyses 
Select events with properties characteristic of signal process 
(invariably select some background events as well). 
 
Case #1:   

 Existence of signal process already well established 
 (e.g. production of top quarks) 

 Study properties of signal events (e.g., measure top quark 
 mass, production cross section, decay properties,...) 

 
Statistics issues: 

 Event selection → multivariate classifiers 
 Parameter estimation  
  (usually maximum likelihood or least squares) 
 Bias, variance of estimators; goodness-of-fit 
 Unfolding (deconvolution). 
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Prototypical analyses (cont.):  a “search” 
Case #2:   

 Existence of signal process not yet established.   

 Goal is to see if it exists by rejecting the background-only  
 hypothesis. 
  

H0:  All of the selected events are background (usually means 
 “standard model” or events from known processes) 

H1:  Selected events contain a mixture of background and signal. 
 
Statistics issues: 

 Optimality (power) of statistical test. 
 Rejection of H0 usually based on p-value < 2.9 ×10-7 (5σ). 
 Some recent interest in use of Bayes factors. 

 In absence of discovery, exclusion limits on parameters of 
 signal models (frequentist, Bayesian, “CLs”,...) 
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(Frequentist) statistical tests 
Consider test of a parameter µ, e.g., proportional to cross section. 

Result of measurement is a set of numbers x. 

To define test of µ, specify critical region wµ, such that probability 
to find x ∈ wµ is not greater than α (the size or significance level): 

(Must use inequality since x may be discrete, so there may not  
exist a subset of the data space with probability of exactly α.) 

Equivalently define a p-value pµ equal to the probability, assuming 
µ, to find data at least as “extreme” as the data observed. 

The critical region of a test of size α can be defined from the set of 
data outcomes with pµ < α.   Often use, e.g., α = 0.05. 

If observe x ∈ wµ, reject µ. 
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Test statistics and p-values 
Often construct a scalar test statistic, qµ(x), which reflects the level 
of agreement between the data and the hypothesized value µ. 

For examples of statistics based on the profile likelihood ratio, 
see, e.g., CCGV, EPJC 71 (2011) 1554;  arXiv:1007.1727. 

Usually define qµ such that higher values represent increasing  
incompatibility with the data, so that the p-value of µ is: 

Equivalent formulation of test:  reject µ if pµ < α. 

pdf of qµ assuming µ observed value of qµ 
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Confidence interval from inversion of a test 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The confidence interval will by construction contain the 
 true value of µ with probability of at least 1 – α. 

The interval depends on the choice of the critical region of the test.  

Put critical region where data are likely to be under assumption of 
the relevant alternative to the µ that’s being tested. 

    Test µ = 0, alternative is µ > 0:  test for discovery. 

    Test µ =  µ0, alternative is µ = 0:  testing all µ0 gives upper limit. 
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p-value for discovery 
Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

will get formula for this later 

From p-value get  
equivalent significance, 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 
 
 
Assume the ni are Poisson distributed with expectation values 

signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 
 
 
Assume the mi are Poisson distributed with expectation values 

nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 

maximizes L for 
specified µ

maximize L
The likelihood ratio of point hypotheses, e.g., λ = L(µ, θ)/L (0, θ),  
gives optimum test  (Neyman-Pearson lemma).  But the 
distribution of this statistic depends in general on the nuisance  
parameters θ,  and one can only reject µ if it is rejected for all θ. 

The advantage of using the profile likelihood ratio is that the 
asymptotic (large sample) distribution of -2ln λ(µ) approaches a 
chi-square form independent of the nuisance parameters θ.   
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Test statistic for discovery 
Try to reject background-only (µ = 0) hypothesis using 

i.e. here only regard upward fluctuation of data as evidence  
against the background-only hypothesis. 

Note that even though here physically µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂
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Distribution of q0 in large-sample limit 
Assuming approximations valid in the large sample (asymptotic) 
limit, we can write down the full distribution of q0 as 

The special case µ′ = 0 is a “half chi-square” distribution:  

In large sample limit, f(q0|0) independent of nuisance parameters; 
f(q0|µ′)  depends on nuisance parameters through σ. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  

The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Monte Carlo test of asymptotic formula 

Here take τ = 1. 

Asymptotic formula is  
good approximation to 5σ
level (q0 = 25) already for 
b ~ 20. 
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Discovery:  the p0 plot 
The “local” p0 means the p-value of the background-only 
hypothesis obtained from the test of µ = 0 at each individual mH, 
without any correct for the Look-Elsewhere Effect. 

The “Expected” (dashed) curve gives the median p0 under 
assumption of the SM Higgs (µ = 1) at each mH. 

ATLAS, Phys. Lett. B 716 (2012) 1-29 

The blue band gives the 
width of the distribution 
(±1σ) of significances 
under assumption of the 
SM Higgs. 



I.e. when setting an upper limit, an upwards fluctuation of the data  
is not taken to mean incompatibility with the hypothesized µ:   

From observed qµ find p-value: 

Large sample  
approximation:    
 
95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 

For purposes of setting an upper limit on µ use 

where 

cf. Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554. 

Independent of  
nuisance param. in 
large sample limit 
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Monte Carlo test of asymptotic formulae 
Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
Use qµ to find p-value of hypothesized µ values. 

E.g.  f (q1|1) for p-value of µ =1. 

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e., 
q1 = 2.69 or  Z1 = √q1 =  1.64. 

Median[q1 |0] gives “exclusion 
sensitivity”. 

Here asymptotic formulae good 
for s = 6, b = 9. 
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Limits:  the “Brazil plot” 
For every value of mH, find the upper limit on µ. 

Also for each mH, determine the distribution of upper limits µup one 
would obtain under the hypothesis of µ = 0.   

The dashed curve is the median µup, and the green (yellow) bands 
give the ± 1σ (2σ) regions of this distribution. 

ATLAS, Phys. Lett. B 716 (2012) 1-29 
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Expected (or median) significance / sensitivity 

When planning the experiment, we want to quantify how sensitive 
we are to a potential discovery, e.g., by given median significance 
assuming some nonzero strength parameter µ ′. 

So for p-value, need f(q0|0), for sensitivity, will need f(q0|µ ′),  
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I.  Discovery sensitivity for counting experiment with b known: 
 

 (a) 
 

 (b)  Profile likelihood  
                   ratio test & Asimov: 

II.  Discovery sensitivity with uncertainty in b, σb: 
 

 (a) 
  
 (b)  Profile likelihood ratio test & Asimov: 

Expected discovery significance for counting  
experiment with background uncertainty 
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 Counting experiment with known background 
Count a number of events n ~ Poisson(s+b), where 

 s = expected number of events from signal, 

 b = expected number of background events. 

Usually convert to equivalent significance: 

To test for discovery of signal compute p-value of s = 0 hypothesis, 

where Φ is the standard Gaussian cumulative distribution, e.g., 
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7. 

To characterize sensitivity to discovery, give expected (mean 
or median) Z under assumption of a given s. 
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s/√b for expected discovery significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for significance 
Poisson likelihood for parameter s is 

So the likelihood ratio statistic for testing s = 0 is 

To test for discovery use profile likelihood ratio: 

For now  
no nuisance  
params. 
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Approximate Poisson significance (continued) 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z|s], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(s+b),  median significance, 
assuming s, of the hypothesis s = 0 

“Exact” values from MC, 
jumps due to discrete data. 
 
Asimov √q0,A good approx. 
for broad range of s, b. 
 
s/√b only good for s « b. 

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727 
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Extending s/√b to case where b uncertain 
The intuitive explanation of s/√b is that it compares the signal, 
 s, to the standard deviation of n assuming no signal, √b. 

Now suppose the value of b is uncertain, characterized by a  
standard deviation σb. 

A reasonable guess is to replace √b by the quadratic sum of 
√b and σb, i.e., 

This has been used to optimize some analyses e.g. where  
σb cannot be neglected. 
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Profile likelihood with b uncertain 

This is the well studied “on/off” problem:  Cranmer 2005; 
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,... 

Measure two Poisson distributed values: 

 n ~ Poisson(s+b)         (primary or “search” measurement) 

 m ~ Poisson(τb)  (control measurement, τ known) 

The likelihood function is 

Use this to construct profile likelihood ratio (b is nuisance 
parameter): 
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Ingredients for profile likelihood ratio 

To construct profile likelihood ratio from this need estimators: 

and in particular to test for discovery (s = 0),  
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Asymptotic significance 
Use profile likelihood ratio for q0, and then from this get discovery 
significance using asymptotic approximation (Wilks’ theorem): 

Essentially same as in: 



Or use the variance of b = m/τ,   

G. Cowan  MPI Seminar 2016 / Statistics for Particle Physics 33 

Asimov approximation for median significance 
To get median discovery significance, replace n, m by their 
expectation values assuming background-plus-signal model: 

 n → s + b 
 m → τb 

,   to eliminate τ: ˆ 
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Limiting cases 
Expanding the Asimov formula in powers of s/b and 
σb

2/b (= 1/τ) gives 

So the “intuitive” formula can be justified as a limiting case 
of the significance from the profile likelihood ratio test evaluated  
with the Asimov data set. 
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Testing the formulae:  s = 5 
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Using sensitivity to optimize a cut 
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Summary on discovery sensitivity 

For large b, all formulae OK. 

For small b, s/√b and s/√(b+σb
2) overestimate the significance. 

 Could be important in optimization of searches with 
 low background. 

Formula maybe also OK if model is not simple on/off experiment,  
e.g., several background control measurements (checking this). 

Simple formula for expected discovery significance based on 
profile likelihood ratio test and Asimov approximation: 
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Prototype multivariate analysis in HEP 
Each event yields a collection of numbers 

 x1 = number of muons, x2 = pt of jet, ... 

     follows some n-dimensional joint pdf, which depends on  
the type of event produced, i.e., signal or background. 

1) What kind of decision boundary best separates the two classes? 

2)  What is optimal test of hypothesis that event sample contains 
 only background? 

H0 
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The Higgs Machine 
Learning Challenge 
higgsml.lal.in2p3.fr 

Competition ran summer 
2014 on kaggle.com, 

~2000 participants. 

Many new ideas from 
machine learning community, 
currently being absorbed by 
HEP: 

 Deep learning 
 Cross validation 
 Ensemble methods 
 ... 
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Comment on choice of variables for MVA 
Usually when choosing the input variables for a multivariate 
analysis, one tries to find those that provide the most 
discrimination between the signal and background events. 

But because of the correlations between variables, there are  
often variables that have identical distributions between signal 
and background, which nevertheless are helpful when used 
in an MVA. 

A simple example is a variable related to the “quality” of an 
event, e.g., the number of pile-up vertices.  This will have the 
same distribution for signal and background, but using it will 
allow the MVA to appropriately weight those events that are 
better measured and deweight (without completely dropping)  
the events where there is less information. 
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A simple example (2D) 
Consider two variables, x1 and x2, and suppose we have formulas 
for the joint pdfs for both signal (s) and background (b) events (in 
real problems the formulas are usually not available). 

     f(x1|x2) ~ Gaussian, different means for s/b, 
    Gaussians have same σ, which depends on x2, 
    f(x2) ~ exponential, same for both s and b, 
    f(x1, x2) =  f(x1|x2) f(x2): 



G. Cowan  MPI Seminar 2016 / Statistics for Particle Physics 42 

Joint and marginal distributions of x1, x2 

background 

signal 

Distribution f(x2) same for s, b. 

So does x2 help discriminate 
between the two event types? 
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Likelihood ratio for 2D example 

Neyman-Pearson lemma says best critical region is determined 
by the likelihood ratio: 

Equivalently we can use any monotonic function of this as 
a test statistic, e.g., 

Boundary of optimal critical region will be curve of constant ln t, 
and this depends on x2! 
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Contours of constant MVA output 

Exact likelihood ratio Fisher discriminant 
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Contours of constant MVA output 

Multilayer Perceptron 
1 hidden layer with 2 nodes 

Boosted Decision Tree 
200 iterations (AdaBoost) 

Training samples:  105 signal and 105 background events 
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ROC curve 

ROC = “receiver operating  
characteristic” (term from  
signal processing). 
 
Shows (usually) background  
rejection (1-εb) versus  
signal efficiency εs. 
 
Higher curve is better;  
usually analysis focused on 
a small part of the curve. 



G. Cowan  MPI Seminar 2016 / Statistics for Particle Physics 47 

2D Example:  discussion 
Even though the distribution of x2 is same for signal and 
background, x1 and x2 are not independent, so using x2 as an input 
variable helps. 

Here we can understand why:  high values of x2 correspond to a 
smaller σ for the Gaussian of x1.  So high x2 means that the value 
of x1 was well measured. 

If we don’t consider x2, then all of the x1 measurements are 
lumped together.  Those with large σ (low x2) “pollute” the well 
measured events with low σ (high x2). 

Often in HEP there may be variables that are characteristic of how 
well measured an event is (region of detector, number of pile-up 
vertices,...).  Including these variables in a multivariate analysis 
preserves the information carried by the well-measured events, 
leading to improved performance. 
 
 
 
In this example we can understand why x2 is useful, even 
though both signal and background have same pdf for x2. 
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Summary and conclusions 
Statistical methods continue to play a crucial role in HEP 
analyses; recent Higgs discovery is an important example. 

HEP has focused on frequentist tests for both p-values and limits; 
many tools developed, e.g.,  

 asymptotic distributions of tests statistics, 
 (CCGV arXiv:1007.1727, Eur Phys. J C 71(2011) 1544; 
 recent extension (CCGV) in arXiv:1210:6948), 

 increasing use of advanced multivariate methods,... 

Many other questions untouched today, e.g., 

 simple corrections for Look-Elsewhere Effect, 

 Use of Bayesian methods for both limits and discovery 
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Extra slides 
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Systematic uncertainties and nuisance parameters 
In general our model of the data is not perfect: 

x  

L 
(x

|θ
) 

model:   

truth: 

Can improve model by including  
additional adjustable parameters. 

Nuisance parameter ↔ systematic uncertainty. Some point in the 
parameter space of the enlarged model should be “true”.   

Presence of nuisance parameter decreases sensitivity of analysis 
to the parameter of interest (e.g., increases variance of estimate). 
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Large sample distribution of the profile 
likelihood ratio (Wilks’ theorem, cont.) 

Suppose problem has likelihood L(θ, ν), with 

← parameters of interest 

← nuisance parameters 

Want to test point in θ-space.  Define profile likelihood ratio: 

,   where  

and define qθ = -2 ln λ(θ). 

Wilks’ theorem says that distribution f (qθ|θ,ν) approaches the 
chi-square pdf for N degrees of freedom for large sample (and  
regularity conditions), independent of the nuisance parameters ν. 

“profiled” values of ν 
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p-values in cases with nuisance parameters 
Suppose we have a statistic qθ that we use to test a hypothesized 
value of a parameter θ, such that the p-value of θ is 

Fundamentally we want to reject θ only if pθ < α for all ν. 
 → “exact” confidence interval 

Recall that for statistics based on the profile likelihood ratio, the 
distribution f (qθ|θ,ν) becomes independent of the nuisance 
parameters in the large-sample limit. 

But in general for finite data samples this is not true; one may be 
unable to reject some θ values if all values of ν must be 
considered, even those strongly disfavoured for reasons external to 
the analysis (resulting interval for θ “overcovers”). 
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Profile construction (“hybrid resampling”) 

Approximate procedure is to reject θ if pθ ≤ α where 
the p-value is computed assuming the profiled values of the  
nuisance parameters: 

“double hat” notation means 
value of parameter that maximizes 
likelihood for the given θ. 

The resulting confidence interval will have the correct coverage 
for the points  (θ, ˆ̂ν(θ)) . 

Elsewhere it may under- or overcover, but this is usually as good 
as we can do (check with MC if crucial or small sample problem). 
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The Look-Elsewhere Effect 

Gross and Vitells, EPJC 70:525-530,2010, arXiv:1005.1891 

Suppose a model for a mass distribution allows for a peak at 
a mass m with amplitude µ.

The data show a bump at a mass m0. 

How consistent is this 
with the no-bump (µ = 0) 
hypothesis? 
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Local p-value 
First, suppose the mass m0 of the peak was specified a priori. 

Test consistency of bump with the no-signal (µ = 0) hypothesis  
with e.g. likelihood ratio  

where “fix” indicates that the mass of the peak is fixed to m0. 

The resulting p-value  

gives the probability to find a value of tfix at least as great as 
observed at the specific mass m0 and is called the local p-value. 
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Global p-value 
But suppose we did not know where in the distribution to 
expect a peak. 

What we want is the probability to find a peak at least as  
significant as the one observed anywhere in the distribution. 

Include the mass as an adjustable parameter in the fit, test  
significance of peak using 

(Note m does not appear 
in the µ = 0 model.) 
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Distributions of tfix, tfloat 

For a sufficiently large data sample, tfix ~chi-square for 1 degree 
of freedom (Wilks’ theorem). 

For tfloat there are two adjustable parameters, µ and m, and naively 
Wilks theorem says tfloat ~ chi-square for 2 d.o.f. 

In fact Wilks’ theorem does 
not hold in the floating mass 
case because on of the 
parameters (m) is not-defined 
in the µ = 0 model. 

So getting tfloat distribution is 
more difficult. 

Gross and Vitells 
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Approximate correction for LEE 
We would like to be able to relate the p-values for the fixed and 
floating mass analyses (at least approximately). 

Gross and Vitells show the p-values are approximately related by 

where 〈N(c)〉 is the mean number “upcrossings” of   
tfix = -2ln λ  in the fit range based on a threshold 

and where Zlocal = Φ-1(1 – plocal) is the local significance. 
So we can either carry out the full floating-mass analysis (e.g.  
use MC to get p-value), or do fixed mass analysis and apply a  
correction factor (much faster than MC). 

Gross and Vitells 
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Upcrossings of -2lnL 

〈N(c)〉 can be estimated  
from  MC (or the real  
data) using a much lower  
threshold c0: 

Gross and Vitells 

The Gross-Vitells formula for the trials factor requires 〈N(c)〉, 
the mean number  “upcrossings” of tfix = -2ln λ above a threshold 
c = tfix,obs found when varying the mass m0 over the range considered. 
  

In this way 〈N(c)〉 can be 
estimated without need of 
large MC samples, even if  
the the threshold c is quite 
high. 



G. Cowan  MPI Seminar 2016 / Statistics for Particle Physics 60 

Multidimensional look-elsewhere effect 
Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 

Vitells and Gross, Astropart. Phys. 35 (2011) 230-234; arXiv:1105.4355 
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Remember the Look-Elsewhere Effect is when we test a single 
model (e.g., SM) with multiple observations, i..e, in mulitple 
places. 

Note there is no look-elsewhere effect when considering 
exclusion limits.    There we test specific signal models (typically 
once) and say whether each is excluded. 

With exclusion there is, however, the analogous issue of testing  
many signal models (or parameter values) and thus excluding  
some even in the absence of signal (“spurious exclusion”) 

Approximate correction for LEE should be sufficient, and one  
should also report the uncorrected significance. 

 “There's no sense in being precise when you don't even  
 know what you're talking about.” ––  John von Neumann 

Summary on Look-Elsewhere Effect 
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Common practice in HEP has been to claim a discovery if the  
p-value of the no-signal hypothesis is below 2.9 × 10-7,  
corresponding to a significance Z = Φ-1 (1 – p) = 5 (a 5σ effect). 

There a number of reasons why one may want to require such 
a high threshold for discovery: 

 The “cost” of announcing a false discovery is high. 

 Unsure about systematics. 

 Unsure about look-elsewhere effect. 

 The implied signal may be a priori highly improbable 
 (e.g., violation of Lorentz invariance). 

Why 5 sigma? 



G. Cowan  MPI Seminar 2016 / Statistics for Particle Physics 63 

But the primary role of the p-value is to quantify the probability 
that the background-only model gives a statistical fluctuation 
as big as the one seen or bigger. 

It is not intended as a means to protect against hidden systematics 
or the high standard required for a claim of an important discovery. 

In the processes of establishing a discovery there comes a point 
where it is clear that the observation is not simply a fluctuation, 
but an “effect”, and the focus shifts to whether this is new physics 
or a systematic. 

Providing LEE is dealt with, that threshold is probably closer to 
3σ than 5σ. 

Why 5 sigma (cont.)? 


