Teilchenphysik mit kosmischen und mit erdgebundenen Beschleunigern

04. Cosmic Accelerators

02.05.2016

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Prof. Dr. Siegfried Bethke Dr. Frank Simon

Cosmic Rays: Discovery

- Discovered by Victor Hess 1912
- Nobel Prize in physics 1936
- Observation on balloon flights with electroscopes:
 - Rate of discharge reduces with increasing altitude, up to an altitude of 1000 m
 - Above this a strong increase of the discharge rate is observed, at 5000 m it is several times higher than the rate at ground level

Cosmic Rays: Discovery

- The experimental method:
 - Electrometer, the distance of (electrostatically charged) strings gives the amount of charge on the strings
 - Discharge via ionising radiation

G. Federmann, Diplomarbeit, U. Wien, 2002

Cosmic Rays: Discovery

- The experimental method:
 - Electrometer, the distance of (electrostatically charged) strings gives the amount of charge on the strings
 - Discharge via ionising radiation
- Interpretation of the observation
 - Reduction of ambient radioactivity with increasing altitude (less radio nuclides, such as Radon)
 - The increase of radiation at high altitudes has to be due to extraterrestrial sources
 "Höhenstrahlung"

G. Federmann, Diplomarbeit, U. Wien, 2002

Cosmic Rays: Spectrum

- Extends over many orders of magnitude in energy and flux:
 - ▶ GeV (10⁹ eV) ZeV (10²¹)
 - >1 cm⁻²s⁻¹ < 1 km⁻² per century

• Follows a power law:

$$\frac{dN}{dE} \propto E^{-\gamma}$$

•
$$\gamma \sim 2.7$$
 E < 10¹⁵ eV

•
$$\gamma \sim 3.0$$
 10¹⁵ eV < E < 10¹⁸ eV

Energy Density of Cosmic Rays

Differential flux on earth

(parametrisation valid from ~ GeV to ~100 TeV):

$$\frac{dN}{dE} \approx \left(\frac{E}{\text{GeV}}\right)^{-2.7} \frac{\text{particles}}{m^2 \, sr \, s \, \text{GeV}}$$

Energy Density of Cosmic Rays

• Differential flux on earth

(parametrisation valid from ~ GeV to ~100 TeV):

$$\frac{dN}{dE} \approx \left(\frac{E}{\text{GeV}}\right)^{-2.7} \frac{\text{particles}}{m^2 \, sr \, s \, \text{GeV}}$$

 Connection of flux and particle density - assumption: particles travel at speed of light:

flux =
$$\frac{1}{4\pi}$$
 × particle density × c

Energy Density of Cosmic Rays

• Differential flux on earth

(parametrisation valid from ~ GeV to ~100 TeV):

$$\frac{dN}{dE} \approx \left(\frac{E}{\text{GeV}}\right)^{-2.7} \frac{\text{particles}}{m^2 \, sr \, s \, \text{GeV}}$$

 Connection of flux and particle density - assumption: particles travel at speed of light:

flux =
$$\frac{1}{4\pi}$$
 × particle density × c

• Energy density:

$$\rho_E = \frac{4\pi}{c} \, \int E \frac{dN}{dE} \approx 1 \frac{eV}{cm^3}$$

• Rough estimate of the energy of cosmic rays within the Milky Way

$$V = \pi R^2 d \sim \pi (15 \, kpc)^2 \, (200 \, pc) \sim 4 \times 10^{60} \, m^3$$

$$\Rightarrow E_{Strahlung} \sim 4 \times 10^{66} eV \sim 6.4 \times 10^{47} J$$

• Rough estimate of the energy of cosmic rays within the Milky Way

$$V = \pi R^2 d \sim \pi (15 \, kpc)^2 \, (200 \, pc) \sim 4 \times 10^{60} \, m^3$$

$$\Rightarrow E_{Strahlung} \sim 4 \times 10^{66} eV \sim 6.4 \times 10^{47} J$$

• Assumption: Particles stay within the galaxy for a few million years

$$P_{Strahlung} \sim 7 \times 10^{33} W$$

• Rough estimate of the energy of cosmic rays within the Milky Way

$$V = \pi R^2 d \sim \pi (15 \, kpc)^2 \, (200 \, pc) \sim 4 \times 10^{60} \, m^3$$

$$\Rightarrow E_{Strahlung} \sim 4 \times 10^{66} eV \sim 6.4 \times 10^{47} J$$

• Assumption: Particles stay within the galaxy for a few million years

$$P_{Strahlung} \sim 7 \times 10^{33} W$$

• Highly energetic events in the galaxy: supernova explosions

 $E_{SN} \sim 10^{44} J$

• Rough estimate of the energy of cosmic rays within the Milky Way

$$V = \pi R^2 d \sim \pi (15 \, kpc)^2 \, (200 \, pc) \sim 4 \times 10^{60} \, m^3$$

$$\Rightarrow E_{Strahlung} \sim 4 \times 10^{66} eV \sim 6.4 \times 10^{47} J$$

• Assumption: Particles stay within the galaxy for a few million years

$$P_{Strahlung} \sim 7 \times 10^{33} W$$

• Highly energetic events in the galaxy: supernova explosions

$$E_{SN} \sim 10^{44} J$$

• About one supernova every 30 years

$$P_{SN} \sim 10^{35} W$$

Rough estimate of the energy of cosmic rays within the Milky Way

$$V = \pi R^2 d \sim \pi (15 \, kpc)^2 \, (200 \, pc) \sim 4 \times 10^{60} \, m^3$$

$$\Rightarrow E_{Strahlung} \sim 4 \times 10^{66} eV \sim 6.4 \times 10^{47} J$$

• Assumption: Particles stay within the galaxy for a few million years

$$P_{Strahlung} \sim 7 \times 10^{33} W$$

• Highly energetic events in the galaxy: supernova explosions

$$E_{SN} \sim 10^{44} J$$

• About one supernova every 30 years

$$P_{SN} \sim 10^{35} W$$

► SNe could be the accelerators, would require ~10% efficiency

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2016, 04: Cosmic Accelerators

Rough estimate of the energy of cosmic rays within the Milky Way

$$V = \pi R^2 d \sim \pi (15 \, kpc)^2 \, (200 \, pc) \sim 4 \times 10^{60} \, m^3$$

$$\Rightarrow E_{Strahlung} \sim 4 \times 10^{66} eV \sim 6.4 \times 10^{47} J$$

• Assumption: Particles stay within the galaxy for a few million years

$$P_{Strahlung} \sim 7 \times 10^{33} W$$

• Highly energetic events in the galaxy: supernova explosions

$$E_{SN} \sim 10^{44} J$$

• About one supernova every 30 years

$$P_{SN} \sim 10^{35} W$$

As comparison: therm. power of the sun ~4x10²⁶ W, Milky Way ~2x10¹¹ stars

SNe could be the accelerators, would require ~10% efficiency

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2016, 04: Cosmic Accelerators

- Proposed by Enrico Fermi 1949
- The principle: Collisions of particles with interstellar gas clouds
 - Particle speed ~ c
 - Cloud speed βc
 - entrance and exit angle relative to cloud direction Θ₁, Θ₂

- Proposed by Enrico Fermi 1949
- The principle: Collisions of particles with interstellar gas clouds
 - Particle speed ~ c
 - Cloud speed βc
 - entrance and exit angle relative to cloud direction Θ₁, Θ₂

• Boost into cloud rest frame:

 $E'_1 = \gamma E_1 - \beta \gamma p_{||} = \gamma E_1 - \beta \gamma \cos \Theta_1 p \approx \gamma E_1 (1 - \beta \cos \Theta_1)$

- Proposed by Enrico Fermi 1949
- The principle: Collisions of particles with interstellar gas clouds
 - Particle speed ~ c
 - Cloud speed βc
 - entrance and exit angle relative to cloud direction Θ₁, Θ₂

• Boost into cloud rest frame:

 $E'_1 = \gamma E_1 - \beta \gamma p_{||} = \gamma E_1 - \beta \gamma \cos \Theta_1 p \approx \gamma E_1 (1 - \beta \cos \Theta_1)$

• Elastic scattering within the cloud: $E_2' = E_1'$ $\langle cos \Theta_2' \rangle = 0$

- Proposed by Enrico Fermi 1949
- The principle: Collisions of particles with interstellar gas clouds
 - Particle speed ~ c
 - Cloud speed βc
 - entrance and exit angle relative to cloud direction Θ₁, Θ₂

• Boost into cloud rest frame:

 $E'_1 = \gamma E_1 - \beta \gamma p_{||} = \gamma E_1 - \beta \gamma \cos \Theta_1 p \approx \gamma E_1 (1 - \beta \cos \Theta_1)$

- Elastic scattering within the cloud: $E_2' = E_1'$ $\langle cos \Theta_2' \rangle = 0$
- Boost boost back to "Universe" frame: $E_2 = \gamma E_2' (1 + \beta cos \Theta_2')$

• Energy difference $\frac{\Delta E}{E} = \frac{E_2 - E_1}{E_1} = \frac{E_2}{E_1} - 1$

• Energy difference $\frac{\Delta E}{E} = \frac{E_2 - E_1}{E_1} = \frac{E_2}{E_1} - 1$ $E_2 = \gamma E'_2 (1 + \beta \cos \Theta'_2) \qquad E'_2 = E'_1 = \gamma E_1 (1 - \beta \cos \Theta_1)$

• Energy difference $\frac{\Delta E}{E} = \frac{E_2 - E_1}{E_1} = \frac{E_2}{E_1} - 1$

 $E_2 = \gamma E_2' (1 + \beta \cos \Theta_2') \qquad \qquad E_2' = E_1' = \gamma E_1 (1 - \beta \cos \Theta_1)$

 $\Rightarrow E_2 = \gamma (\gamma E_1 - \beta \gamma E_1 cos \Theta_1) (1 + \beta cos \Theta_2')$

• Energy difference $\frac{\Delta E}{E} = \frac{E_2 - E_1}{E_1} = \frac{E_2}{E_1} - 1$

$$E_{2} = \gamma E_{2}'(1 + \beta \cos\Theta_{2}') \qquad E_{2}' = E_{1}' = \gamma E_{1}(1 - \beta \cos\Theta_{1})$$

$$\Rightarrow E_{2} = \gamma(\gamma E_{1} - \beta \gamma E_{1} \cos\Theta_{1})(1 + \beta \cos\Theta_{2}')$$

$$\Rightarrow \frac{\Delta E}{E} = \gamma^{2}(1 - \beta \cos\Theta_{1})(1 + \beta \cos\Theta_{2}') - 1$$

• Energy difference $\frac{\Delta E}{E} = \frac{E_2 - E_1}{E_1} = \frac{E_2}{E_1} - 1$

$$E_{2} = \gamma E_{2}'(1 + \beta \cos\Theta_{2}') \qquad E_{2}' = E_{1}' = \gamma E_{1}(1 - \beta \cos\Theta_{1})$$

$$\Rightarrow E_{2} = \gamma (\gamma E_{1} - \beta \gamma E_{1} \cos\Theta_{1})(1 + \beta \cos\Theta_{2}')$$

$$\Rightarrow \frac{\Delta E}{E} = \gamma^{2}(1 - \beta \cos\Theta_{1})(1 + \beta \cos\Theta_{2}') - 1$$

$$= \frac{(1 - \beta \cos\Theta_{1})(1 + \beta \cos\Theta_{2}')}{1 - \beta^{2}} - 1$$

- Energy difference $\frac{\Delta E}{E} = \frac{E_2 E_1}{E_1} = \frac{E_2}{E_1} 1$
 - $E_{2} = \gamma E_{2}'(1 + \beta \cos\Theta_{2}') \qquad E_{2}' = E_{1}' = \gamma E_{1}(1 \beta \cos\Theta_{1})$ $\Rightarrow E_{2} = \gamma(\gamma E_{1} \beta \gamma E_{1} \cos\Theta_{1})(1 + \beta \cos\Theta_{2}')$ $\Rightarrow \frac{\Delta E}{E} = \gamma^{2}(1 \beta \cos\Theta_{1})(1 + \beta \cos\Theta_{2}') 1$ $= \frac{(1 \beta \cos\Theta_{1})(1 + \beta \cos\Theta_{2}')}{1 \beta^{2}} 1$
- Mean values: $\langle cos \Theta_2' \rangle = 0$
 - · Scattering probability depends on relative velocity between particle and cloud

- Energy difference $\frac{\Delta E}{E} = \frac{E_2 E_1}{E_1} = \frac{E_2}{E_1} 1$
 - $E_{2} = \gamma E_{2}'(1 + \beta \cos\Theta_{2}') \qquad E_{2}' = E_{1}' = \gamma E_{1}(1 \beta \cos\Theta_{1})$ $\Rightarrow E_{2} = \gamma(\gamma E_{1} \beta \gamma E_{1}\cos\Theta_{1})(1 + \beta \cos\Theta_{2}')$ $\Rightarrow \frac{\Delta E}{E} = \gamma^{2}(1 \beta \cos\Theta_{1})(1 + \beta \cos\Theta_{2}') 1$ $= \frac{(1 \beta \cos\Theta_{1})(1 + \beta \cos\Theta_{2}')}{1 \beta^{2}} 1$
- Mean values: $\langle cos \Theta_2' \rangle = 0$
 - Scattering probability depends on relative velocity between particle and cloud $P\propto (c-c\beta cos\Theta_1)\propto 1-\beta cos\Theta_1$

- Energy difference $\frac{\Delta E}{E} = \frac{E_2 E_1}{E_1} = \frac{E_2}{E_1} 1$
 - $E_{2} = \gamma E_{2}'(1 + \beta \cos\Theta_{2}') \qquad E_{2}' = E_{1}' = \gamma E_{1}(1 \beta \cos\Theta_{1})$ $\Rightarrow E_{2} = \gamma(\gamma E_{1} \beta \gamma E_{1}\cos\Theta_{1})(1 + \beta \cos\Theta_{2}')$ $\Rightarrow \frac{\Delta E}{E} = \gamma^{2}(1 \beta \cos\Theta_{1})(1 + \beta \cos\Theta_{2}') 1$ $= \frac{(1 \beta \cos\Theta_{1})(1 + \beta \cos\Theta_{2}')}{1 \beta^{2}} 1$
- Mean values: $\langle cos \Theta_2' \rangle = 0$
 - Scattering probability depends on relative velocity between particle and cloud

$$P \propto (c - c\beta cos\Theta_1) \propto 1 - \beta cos\Theta_1$$

$$\Rightarrow \frac{dN}{d\cos\Theta_1} \propto 1 - \beta\cos\Theta_1 \Rightarrow \langle\cos\Theta_1\rangle = \frac{\int_{-1}^1 \frac{dN}{d\cos\Theta_1} \cos\Theta_1 d\cos\Theta_1}{\int_{-1}^1 \frac{dN}{d\cos\Theta_1} d\cos\Theta_1} = -\frac{\beta}{3}$$

• Energy difference: $\frac{\Delta E}{E} = \frac{(1 - \beta cos\Theta_1)(1 + \beta cos\Theta_2')}{1 - \beta^2} - 1$

• Energy difference: $\frac{\Delta E}{E} = \frac{(1 - \beta cos\Theta_1)(1 + \beta cos\Theta_2')}{1 - \beta^2} - 1$

with:
$$\langle cos\Theta_1
angle = -rac{eta}{3} \;,\; \langle cos\Theta_2'
angle = 0$$

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2016, 04: Cosmic Accelerators

• Energy difference: $\frac{\Delta E}{E} = \frac{(1 - \beta cos\Theta_1)(1 + \beta cos\Theta_2')}{1 - \beta^2} - 1$

with:
$$\langle cos\Theta_1 \rangle = -\frac{\beta}{3} , \ \langle cos\Theta_2' \rangle = 0$$

$$\Rightarrow \frac{\langle \Delta E \rangle}{E} = \frac{1 + \frac{\beta^2}{3}}{1 - \beta^2} - 1 \approx \frac{4}{3}\beta^2 \text{ für } \beta \ll 1$$

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2016, 04: Cosmic Accelerators

• Energy difference: $\frac{\Delta E}{E} = \frac{(1 - \beta cos\Theta_1)(1 + \beta cos\Theta_2')}{1 - \beta^2} - 1$

with:
$$\langle cos\Theta_1 \rangle = -\frac{\beta}{3} , \ \langle cos\Theta_2' \rangle = 0$$

$$\Rightarrow \frac{\langle \Delta E \rangle}{E} = \frac{1 + \frac{\beta^2}{3}}{1 - \beta^2} - 1 \approx \frac{4}{3}\beta^2 \text{ für } \beta \ll 1$$

- Very low acceleration efficiency (proportional to β^2 second order in β):
 - typical cloud speeds 10^4 m/s => $\beta \sim 3 \times 10^{-5}$
 - mean free path between collisions: ~ 30 pc => every 100 years one collision

• Energy difference: $\frac{\Delta E}{E} = \frac{(1 - \beta cos\Theta_1)(1 + \beta cos\Theta_2')}{1 - \beta^2} - 1$

with:
$$\langle cos\Theta_1 \rangle = -\frac{\beta}{3} \ , \ \langle cos\Theta_2' \rangle = 0$$

$$\Rightarrow \frac{\langle \Delta E \rangle}{E} = \frac{1 + \frac{\beta^2}{3}}{1 - \beta^2} - 1 \approx \frac{4}{3}\beta^2 \text{ für } \beta \ll 1$$

- Very low acceleration efficiency (proportional to β^2 second order in β):
 - typical cloud speeds 10^4 m/s => $\beta \sim 3 \times 10^{-5}$
 - mean free path between collisions: ~ 30 pc => every 100 years one collision

Energy gain:
$$\frac{dE}{dt} = E \frac{4\beta^2}{3\tau} \Rightarrow E(t) = E_0 e^{\frac{4\beta^2}{3\tau}t}$$

• Energy difference: $\frac{\Delta E}{E} = \frac{(1 - \beta cos\Theta_1)(1 + \beta cos\Theta_2')}{1 - \beta^2} - 1$

with:
$$\langle cos\Theta_1 \rangle = -\frac{\beta}{3} , \ \langle cos\Theta_2' \rangle = 0$$

$$\Rightarrow \frac{\langle \Delta E \rangle}{E} = \frac{1 + \frac{\beta^2}{3}}{1 - \beta^2} - 1 \approx \frac{4}{3}\beta^2 \text{ für } \beta \ll 1$$

- Very low acceleration efficiency (proportional to β^2 second order in β):
 - typical cloud speeds 10^4 m/s => $\beta \sim 3 \times 10^{-5}$
 - mean free path between collisions: ~ 30 pc => every 100 years one collision

Energy gain:
$$\frac{dE}{dt} = E \frac{4\beta^2}{3\tau} \Rightarrow E(t) = E_0 e^{\frac{4\beta^2}{3\tau}t}$$

Characteristic time:
$$\frac{3\tau}{4\beta^2} \approx 6 \times 10^{10}a$$

Supernovae

- Classification in to main types
 - SN I: no hydrogen lines in spectrum
 - SN Ia collapse of an accreting white dwarf in a binary star system to a neutron star
 - SN II: hydrogen lines visible
 - Gravitational collapse of a massive star at the end of its life
 - Star burns up to the formation of iron in the core, then no radiation pressure to counter gravitation
 - Atoms are converted to neutrons via electron capture
 - Star collapses with a speed of ~ 0.1 c
 - Matter is reflected at the stable neutron star in the core
 - A shock wave runs outwards
 - An enormous number of neutrinos is produced (~10⁵⁸), despite their small interaction cross section they further drive the shock wave

Supernova SN1987a

 Supernova explosion 1987 in the great Magellanic Cloud (small partner galaxy of the Milky Way)

Supernova SN1987a

Inner debris of the Supernova 1987A (SN 1987A) ring

Outer bipolar outflow of gas and outer ring	
Inner bipolar outflow of debris	
Hot fingers	
Ring	
wave	
Supernova debris	Ser.
Hidden neutron star or black hole	Contraction of the second

Credit:NASA, ESA, and A, Feild (STScI)

First Order Fermi Acceleration

- Extension of Fermi acceleration concept to supernova shocks
- Formation of the shock wave:
 - SN ejects large amounts of material (several solar masses) with high velocity into the interstellar medium
 - $v_{material} >> v_{sound(ISM)}$, $v_{material} \thicksim 10^7~m/s$, $v_{sound(ISM)} \thicksim 10^4~m/s$
 - Since the matter is much faster than the speed of sound a shock front develops

- The shock wave propagates in the ionized plasma of the ISM (single atoms, specific heat 5/3)
- Hydrodynamics can show that the speed of the shock wave is:

 $V_{shock}/V_{material} \sim 4/3$

- Particle acceleration by repeated crossing of shock fronts
- As for second order Fermi Acceleration the particles are scattered by magnetic field inhomogeneities / turbulences
 - Key "feature": behind the shock, these turbulences move with the speed of the ejected matter

- Particle acceleration by repeated crossing of shock fronts
- As for second order Fermi Acceleration the particles are scattered by magnetic field inhomogeneities / turbulences
 - Key "feature": behind the shock, these turbulences move with the speed of the ejected matter

- Considerations concerning incidence angles of particles:
 - Shock front introduces directional motion projection of flux onto front

 $\begin{array}{ll} \mbox{Effective area} & A' = -A\cos\Theta_1 \\ \mbox{Flux crossing shock} & \frac{dN}{d\cos\Theta_1} \propto -\cos\Theta_1 \end{array}$

 Mean value of angles (key point here: Crossing of shock only for cosΘ₁ < 0, other particles do not contribute!):

$$\begin{aligned} \langle \cos\Theta_1 \rangle &= \frac{\int_{-1}^0 \frac{dN}{d\cos\Theta_1} \cos\Theta_1 d\cos\Theta_1}{\int_{-1}^0 \frac{dN}{d\cos\Theta_1} d\cos\Theta_1} \\ &= \frac{\int_{-1}^0 -\cos^2\Theta_1 d\cos\Theta_1}{\int_{-1}^0 -\cos\Theta_1 d\cos\Theta_1} = -\frac{2}{3} \end{aligned}$$

analog:
$$\langle cos\Theta_2 \rangle = \frac{2}{3}$$

• Mean energy change (analogous to second order FA):

$$\frac{\Delta E}{E} = \frac{(1 - \beta \cos\Theta_1)(1 + \beta \cos\Theta_2')}{1 - \beta^2} - 1$$

β: Speed of matter behind shock wave

• Mean energy change (analogous to second order FA):

$$\frac{\Delta E}{E} = \frac{(1 - \beta \cos\Theta_1)(1 + \beta \cos\Theta_2')}{1 - \beta^2} - 1$$

 $\frac{\langle \Delta E \rangle}{E} = \frac{\left(1 + \frac{2}{3}\beta\right)\left(1 + \frac{2}{3}\beta\right)}{1 - \beta^2} - 1$

β: Speed of matter behind shock wave

• Mean energy change (analogous to second order FA):

$$\frac{\Delta E}{E} = \frac{(1 - \beta \cos\Theta_1)(1 + \beta \cos\Theta_2')}{1 - \beta^2} - 1$$

$$\frac{\langle \Delta E \rangle}{E} = \frac{\left(1 + \frac{2}{3}\beta\right)\left(1 + \frac{2}{3}\beta\right)}{1 - \beta^2} - 1$$

• for $\beta \ll 1$ $\frac{\langle \Delta E \rangle}{E} \approx \frac{4}{3}\beta$

β: Speed of matter behind shock wave

• Mean energy change (analogous to second order FA):

$$\frac{\Delta E}{E} = \frac{(1 - \beta \cos\Theta_1)(1 + \beta \cos\Theta_2')}{1 - \beta^2} - 1$$

 $\frac{\langle \Delta E \rangle}{E} = \frac{\left(1 + \frac{2}{3}\beta\right)\left(1 + \frac{2}{3}\beta\right)}{1 - \beta^2} - 1$

• for
$$\beta \ll 1$$
 $\frac{\langle \Delta E \rangle}{E} \approx \frac{4}{3}\beta$

β: Speed of matter behind shock wave

- Substantially more efficient than second order acceleration due to two effects:
 - Iarge velocity differences of material before and after shock front
 - In directed motion of shock instead of random drifting
- $\beta \sim 3 \times 10^{-2}$, acceleration linear in β (first order in β)

• Energy gain per cycle

$$\frac{\langle \Delta E \rangle}{E} = \zeta \approx \frac{4}{3} \beta_{Plasma} \approx \beta_{Schock}$$

$$\Rightarrow E = E_0 (1 + \zeta)^k \quad \text{after k cycles}$$

• Reminder:

V_{shock}/V_{material} ~ 4/3 for strong shocks

• Energy gain per cycle

$$\frac{\langle \Delta E \rangle}{E} = \zeta \approx \frac{4}{3} \beta_{Plasma} \approx \beta_{Schock}$$

$$\Rightarrow E = E_0 \left(1 + \zeta\right)^k \quad \text{after k cycles}$$

Reminder:

V_{shock}/V_{material} ~ 4/3 for strong shocks

- The number of cycles depends on the loss rate
 - particles can be lost downstream of the shock

behind the shock the plasma is v_s/4 slower than the shock wave itself, particles "diffuse" in the plasma

=> A particle can get lost if it falls to far behind the shock

 $u_2 = V_{\rm S} / 4$

 $u_1 = V_s$

downstream

upstream

• Energy gain per cycle

$$\frac{\langle \Delta E \rangle}{E} = \zeta \approx \frac{4}{3} \beta_{Plasma} \approx \beta_{Schock}$$

$$\Rightarrow E = E_0 \left(1 + \zeta\right)^k \quad \text{after k cycles}$$

Reminder: v_{shock}/v_{material} ~ 4/3

for strong shocks

- The number of cycles depends on the loss rate
 - particles can be lost downstream of the shock

behind the shock the plasma is v_s/4 slower than the shock wave itself, particles "diffuse" in the plasma

=> A particle can get lost if it falls to far behind the shock

 \bullet

In general: the material behind the shock is 1/4 slower than the front itself, the loss rate depends on that difference:

 $R_{loss} = n_{CR} v_s / 4$ n_{CR} is the particle density

• Particle flux from "upstream" through the shock:

Particle movement relative to shock (particle velocity v_t)

 $v_{relativ} = v_s + v_t cos\theta$

• Particle flux from "upstream" through the shock:

Particle movement relative to shock (particle velocity v_t)

$$v_{relativ} = v_s + v_t cos\theta$$

particles cross the shock if $v_{relative} > 0$, which puts constraints on the angle:

$$cos\theta > -v_s/v_t$$

• Particle flux from "upstream" through the shock:

Particle movement relative to shock (particle velocity v_t)

$$v_{relativ} = v_s + v_t cos\theta$$

particles cross the shock if $v_{relative} > 0$, which puts constraints on the angle:

$$cos\theta > -v_s/v_t$$

Crossing rate:

n_{CR} is the particle density in the shock region

$$R_{cross} = n_{CR} \frac{1}{4\pi} \int_{-v_s/v_t}^{1} (v_s + v_t \cos\theta) 2\pi \, d\cos\theta \approx v_t n_{CR}/4$$

• Particle flux from "upstream" through the shock:

Particle movement relative to shock (particle velocity v_t)

$$v_{relativ} = v_s + v_t cos\theta$$

particles cross the shock if $v_{relative} > 0$, which puts constraints on the angle:

$$\cos\theta > -v_s/v_t$$

Crossing rate:

n_{CR} is the particle density in the shock region

$$R_{cross} = n_{CR} \frac{1}{4\pi} \int_{-v_s/v_t}^{1} (v_s + v_t \cos\theta) 2\pi \, d\cos\theta \, \approx \, v_t n_{CR}/4$$

Escape probability:
$$P_{escape} = \frac{R_{loss}}{R_{cross}} = \frac{v_s}{v_t}$$

• Particle flux from "upstream" through the shock:

Particle movement relative to shock (particle velocity v_t)

$$v_{relativ} = v_s + v_t cos\theta$$

particles cross the shock if $v_{relative} > 0$, which puts constraints on the angle:

$$\cos\theta > -v_s/v_t$$

Crossing rate: n_{CR} is the particle density in the shock region

$$R_{cross} = n_{CR} \frac{1}{4\pi} \int_{-v_s/v_t}^{1} (v_s + v_t \cos\theta) 2\pi \, d\cos\theta \, \approx \, v_t n_{CR}/4$$

Escape probability:
$$P_{escape} = \frac{R_{loss}}{R_{cross}} = \frac{v_s}{v_t}$$
 NB: $v_t \sim c$

The probability to cross the shock front at least k times is:

$$P_{cross>k} = (1 - P_{escape})^k = \left(1 - \frac{v_s}{v_t}\right)^k \approx (1 - \beta_{Schock})^k$$

• Reminder: Energy after k cycles:

 $E = E_0 \left(1 + \zeta \right)^k \approx E_0 \left(1 + \beta_{Schock} \right)^k$

• Reminder: Energy after k cycles:

$$E = E_0 (1 + \zeta)^k \approx E_0 (1 + \beta_{Schock})^k$$
$$\Rightarrow k = \frac{\ln(E/E_0)}{\ln(1 + \beta_{Schock})}$$

• Reminder: Energy after k cycles:

$$E = E_0 (1 + \zeta)^k \approx E_0 (1 + \beta_{Schock})^k$$
$$\Rightarrow k = \frac{\ln(E/E_0)}{\ln(1 + \beta_{Schock})}$$

• Integrated Spectrum (Number of particles with an energy > E):

$$Q(>E) \propto (1 - P_{escape})^k = (1 - \beta_{Schock})^k$$

• Reminder: Energy after k cycles:

$$E = E_0 (1 + \zeta)^k \approx E_0 (1 + \beta_{Schock})^k$$
$$\Rightarrow k = \frac{\ln(E/E_0)}{\ln(1 + \beta_{Schock})}$$

• Integrated Spectrum (Number of particles with an energy > E):

$$Q(>E) \propto (1 - P_{escape})^k = (1 - \beta_{Schock})^k$$

$$lnQ(>E) = const + k ln(1 - \beta_{Schock})$$
$$= const' + \frac{ln(1 - \beta_{Schock})}{ln(1 + \beta_{Schock})} lnE$$

• Reminder: Energy after k cycles:

$$E = E_0 (1 + \zeta)^k \approx E_0 (1 + \beta_{Schock})^k$$
$$\Rightarrow k = \frac{\ln(E/E_0)}{\ln(1 + \beta_{Schock})}$$

• Integrated Spectrum (Number of particles with an energy > E):

$$Q(>E) \propto (1 - P_{escape})^k = (1 - \beta_{Schock})^k$$

$$lnQ(>E) = const + k ln(1 - \beta_{Schock})$$

= const' + $\frac{ln(1 - \beta_{Schock})}{ln(1 + \beta_{Schock})} lnE$ $\frac{ln(1 - \beta_{Schock})}{ln(1 + \beta_{Schock})} \approx -1$

• Reminder: Energy after k cycles:

$$E = E_0 (1 + \zeta)^k \approx E_0 (1 + \beta_{Schock})^k$$
$$\Rightarrow k = \frac{\ln(E/E_0)}{\ln(1 + \beta_{Schock})}$$

• Integrated Spectrum (Number of particles with an energy > E):

$$Q(>E) \propto (1 - P_{escape})^k = (1 - \beta_{Schock})^k$$

$$lnQ(>E) = const + k ln(1 - \beta_{Schock})$$

= const' + $\frac{ln(1 - \beta_{Schock})}{ln(1 + \beta_{Schock})} lnE$ $\frac{ln(1 - \beta_{Schock})}{ln(1 + \beta_{Schock})} \approx -1$

• Differential particle spectrum

$$\frac{dN}{dE} \propto E^{-2}$$

Maximum Energy

 First order Fermi Acceleration can reach energies up to ~ 10¹⁴ eV for shock waves originating from supernova explosions (incomplete derivation in Backup)

based on a shock lifetime of ~ 1000 years a shock speed of 0.03 c, and a B field in the nT range

Extends up to the knee of the cosmic ray spectrum

Supernova shock acceleration is well established as a source for cosmic rays

But: What is the origin of the very highest energies above 10¹⁸ GeV?

A+Ayatt

Highest Energies?

• How are energies > 1 PeV reached?

- More energetic events
 - Active galactic nuclei
 - Pulsars (neutron stars)
 - GRB's
- Extreme magnetic fields
- Shock acceleration in highly relativistic jets: additional
 γ Factor

- Neutron stars: compact remnants of supernova explosions
 - radius ~ 10 km
 - extreme rotation: up to ~ 40 000 RPM
 - magentic fields up to $\sim 10^8 \text{ T}$
 - mass ~ 1.4 M_{Sun}

- Neutron stars: compact remnants of supernova explosions
 - radius ~ 10 km
 - extreme rotation: up to ~ 40 000 RPM
 - magentic fields up to $\sim 10^8 \text{ T}$
 - mass ~ 1.4 M_{Sun}

Maximum energy: limited by the Larmor radius of the particle: The particle will escape if r_{L} gets to large!

- Neutron stars: compact remnants of supernova explosions
 - radius ~ 10 km
 - extreme rotation: up to ~ 40 000 RPM
 - magentic fields up to $\sim 10^8 \text{ T}$
 - mass ~ 1.4 M_{Sun}

Maximum energy: limited by the Larmor radius of the particle: The particle will escape if r_{L} gets to large!

$$r_L = \frac{p_T}{|q|B} \qquad \qquad p_T \approx$$

$$p_T \approx E/c$$

- Neutron stars: compact remnants of supernova explosions
 - radius ~ 10 km
 - extreme rotation: up to ~ 40 000 RPM
 - magentic fields up to $\sim 10^8 \text{ T}$
 - mass ~ 1.4 M_{Sun}

Maximum energy: limited by the Larmor radius of the particle: The particle will escape if r_L gets to large!

$$r_L = \frac{p_T}{|q|B} \qquad \qquad p_T \approx E/c$$

$$\Rightarrow E_{max} = Z e c B R$$

- Neutron stars: compact remnants of supernova explosions
 - radius ~ 10 km
 - extreme rotation: up to ~ 40 000 RPM
 - magentic fields up to $\sim 10^8 \text{ T}$
 - mass ~ 1.4 M_{Sun}

Maximum energy: limited by the Larmor radius of the particle: The particle will escape if r_{L} gets to large!

$$r_L = \frac{p_T}{|q|B} \qquad \qquad p_T \approx E/c$$

$$\Rightarrow E_{max} = Z e c B R$$

For Z = 1 (protons): $E_{max} \sim 5 \text{ J} = 3 \times 10^{20} \text{ eV}$

Candidates for the Highest Energies

Particles are accelerated as long as they stay in the high field region: $r_L < L$

$$E_{\rm max} \approx 10^{20} eV ZB_{\mu G} L_{100 \, kpc}$$

For Iron nuclei 26 x higher energies are possible relative to protons!

Candidates for the Highest Energies

Particles are accelerated as long as they stay in the high field region: $r_L < L$

$$E_{\rm max} \approx 10^{20} eV ZB_{\mu G} L_{100 \, kpc}$$

For Iron nuclei 26 x higher energies are possible relative to protons!

Beyond this simple consideration: Radiation losses in the source have to be taken into account:

synchotron radiation, photo reactions

S. Coutu, TIPP11

One Example

• 3C353 - Active galaxy 130 Mpc away

... more about the highest later in the lecture!

Propagation of Cosmic Rays

- The source spectrum of shock acceleration follows an E⁻² distribution, but we observe E^{-2.7}, why?
- Energy-dependent loss of particles when travelling through the galaxy
- Important contributions:
 - diffusion
 - convection
 - acceleration

transport in turbulent galactic magnetic fields

- decay of unstable particles and nuclei
- collisions
- cascade production, spallation of heavy nuclei

loss processes

Leaky Box Model

• Very simple model assuming cosmic rays propagate freely in the galaxy with a constant escape / loss probability

$$N(E,t) = N_0(E)e^{-t/\tau_{escape}}$$

Leaky Box Model

 Very simple model assuming cosmic rays propagate freely in the galaxy with a constant escape / loss probability

 $N(E,t) = N_0(E)e^{-t/\tau_{escape}}$

- Adaptation to reality escape / loss probability is energy dependent:
 - particles with higher energy can more easily leave the "magnetic confinement" in the galaxy and are more likely to participate in inelastic reactions
 - ▶ The observed spectrum gets steeper than the source spectrum: E^{-2.7}

Leaky Box Model

 Very simple model assuming cosmic rays propagate freely in the galaxy with a constant escape / loss probability

 $N(E,t) = N_0(E)e^{-t/\tau_{escape}}$

- Adaptation to reality escape / loss probability is energy dependent:
 - particles with higher energy can more easily leave the "magnetic confinement" in the galaxy and are more likely to participate in inelastic reactions
 - ▶ The observed spectrum gets steeper than the source spectrum: E^{-2.7}
- Loss probability due to inelastic reactions depends on amount of traversed matter
 - Density of the ISM in the galaxy: ~ 1 proton/cm³ ~ 1.7 x 10⁻²⁴ g/cm³
 - ▶ per year one particle traverses ~ 1.5 x10⁻⁶ g/cm²
 - Ioss after traversing ~ 5 10 g/cm² (derived from observed composition)
 - ▶ Particles stay in the galaxy for about 5 x 10⁶ years

Magnetic Fields in the Galaxy

- Magnetic field in the galaxy along spiral arms, with additional turbulent contributions overlaid
- typical strength ~0.1 nT

Propagation of Particles in Magnetic Fields

- Charged particles are deflected by cosmic magnetic fields
- To demonstrate: toy simulation with magnetic fields of ~0.1 nT and a coherence length of ~100 pc
 - Particles start from the left center with different energies
- Only the very highest energies

 (E ~ 10¹⁹ eV) can show the way to
 their sources all other particles
 get substantially deflected and
 arrive from random directions

Summary

- Cosmic rays are known since 100 years
 - Discovered by Victor Hess on balloon flights
- Acceleration mechanism via scattering on randomly moving cosmic clouds proposed by Fermi 60 years ago (second order Fermi Acceleration)
 - A proof of principle, but insufficient to reach high energies
- Acceleration in shock fronts created by supernovae (first order Fermi Acceleration) can explain energies at least up to ~10¹⁴ eV
 - Shock front acceleration is most likely also responsible for even higher energies in objects such as pulsars, blazars, AGNs...

Summary

- Cosmic rays are known since 100 years
 - Discovered by Victor Hess on balloon flights
- Acceleration mechanism via scattering on randomly moving cosmic clouds proposed by Fermi 60 years ago (second order Fermi Acceleration)
 - A proof of principle, but insufficient to reach high energies
- Acceleration in shock fronts created by supernovae (first order Fermi Acceleration) can explain energies at least up to ~10¹⁴ eV
 - Shock front acceleration is most likely also responsible for even higher energies in objects such as pulsars, blazars, AGNs...

Next Lecture: 09.05., "The Standard Model", S. Bethke

Topics - Overview

11.04.	Einführung / Introduction
18.04.	Erdgebundene Beschleuniger / Accelerators
25.04.	Detektoren in der Nicht-Beschleuniger-Physik / Detectors
02.05.	Kosmische Beschleuniger / Cosmic Accelerators
09.05.	Das Standardmodell / The Standard Model
16.05.	Pfingsten - Keine Vorlesung! No Lecture
23.05.	QCD und Jet Physik an Lepton Beschleunigern / QCD and Jets
30.05.	Präzisionsexperimente (g-2) / Precision Experiments
06.06.	Gravitationswellen / Gravitational Waves
13.06.	Kosmische Strahlung I / Cosmic Rays I
20.06.	Kosmische Strahlung II / Cosmic Rays II
27.06.	Dunkle Materie & Dunkle Energie / Dark Matter & Dark Energy
04.07.	Neutrinos I
11.07.	Neutrinos II

Backup

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2016, 04: Kosmische Beschleuniger

• Die Rate des Energiezuwaches ist gegeben durch die Dauer eines Zyklus und durch den Zuwachs pro Zyklus:

$$\frac{dE}{dt} = \frac{\Delta E}{t_{cycle}} = \frac{E\beta_{Schock}}{t_{cycle}}$$

• Die Rate des Energiezuwaches ist gegeben durch die Dauer eines Zyklus und durch den Zuwachs pro Zyklus:

 $\frac{dE}{dt} = \frac{\Delta E}{t_{cycle}} = \frac{E\,\beta_{Schock}}{t_{cycle}}$

• Betrachtung im Bezugssystem des Schocks:

Hinter dem Schock: Teilchen diffundiert (Diffusionskoeffizient k₂), und "fliesst" mit der Plasmageschwindigkeit mit. Verweildauer hinter dem Schock: t

Diffusion: $\sqrt{k_2 t}$

gerichtete Bewegung: u_2t

 Die Rate des Energiezuwaches ist gegeben durch die Dauer eines Zyklus und durch den Zuwachs pro Zyklus:

 $\frac{dE}{dt} = \frac{\Delta E}{t_{cycle}} = \frac{E\,\beta_{Schock}}{t_{cycle}}$

• Betrachtung im Bezugssystem des Schocks:

Hinter dem Schock: Teilchen diffundiert (Diffusionskoeffizient k₂), und "fliesst" mit der Plasmageschwindigkeit mit. Verweildauer hinter dem Schock: t

Diffusion: $\sqrt{k_2 t}$

gerichtete Bewegung: u_2t

Hohe Wahrscheinlichkeit, wieder in den Schock zu kommen:

 $\sqrt{k_2 t} \gg u_2 t$

 Die Rate des Energiezuwaches ist gegeben durch die Dauer eines Zyklus und durch den Zuwachs pro Zyklus:

 $\frac{dE}{dt} = \frac{\Delta E}{t_{cycle}} = \frac{E\,\beta_{Schock}}{t_{cycle}}$

• Betrachtung im Bezugssystem des Schocks:

Hinter dem Schock: Teilchen diffundiert (Diffusionskoeffizient k₂), und "fliesst" mit der Plasmageschwindigkeit mit. Verweildauer hinter dem Schock: t

Diffusion: $\sqrt{k_2 t}$

gerichtete Bewegung: u_2t

Hohe Wahrscheinlichkeit, wieder in den Schock zu kommen: $\sqrt{k_2 t} \gg u_2 t$ Hohe Wahrscheinlichkeit, den Schock für immer zu verlassen: $\sqrt{k_2 t} \ll u_2 t$

- "Grenze", die entscheidet, ob ein Teilchen "verloren" ist: $\sim k_2/u_2$
- Verweildauer hinter dem Schock aus Teilchendichte und Übergangsrate:

$$t_2 \approx n_{CR} \frac{k_2}{u_2} \frac{1}{R_{Cross}} = \frac{4}{c} \frac{k_2}{u_2}$$

- "Grenze", die entscheidet, ob ein Teilchen "verloren" ist: $\sim k_2/u_2$
- Verweildauer hinter dem Schock aus Teilchendichte und Übergangsrate:

$$t_2 \approx n_{CR} \frac{k_2}{u_2} \frac{1}{R_{Cross}} = \frac{4}{c} \frac{k_2}{u_2}$$

- Analoge Überlegungen für die "Upstream" Zone:
 - k_1/u_1 markiert hier die Grenze zwischen Teilchen, die schon von hinter dem Schock gekommen und und solchen, die noch nie durch den Schock gegangen sind $A_k k_1$

$$t_1 \approx \frac{4}{c} \frac{k_1}{u_1}$$

- "Grenze", die entscheidet, ob ein Teilchen "verloren" ist: $\sim k_2/u_2$
- Verweildauer hinter dem Schock aus Teilchendichte und Übergangsrate:

$$t_2 \approx n_{CR} \frac{k_2}{u_2} \frac{1}{R_{Cross}} = \frac{4}{c} \frac{k_2}{u_2}$$

- Analoge Überlegungen für die "Upstream" Zone:
 - k_1/u_1 markiert hier die Grenze zwischen Teilchen, die schon von hinter dem Schock gekommen und und solchen, die noch nie durch den Schock gegangen sind $4 k_1$

$$t_1 \approx \frac{4}{c} \frac{k_1}{u_1}$$

• Damit ergibt sich die Zyklus-Dauer:

$$t_{cycle} = t_1 + t_2 \approx \frac{4}{c} \left(\frac{k_1}{u_1} + \frac{k_2}{u_2} \right) = \frac{4}{\beta_{Schock} c^2} (k_1 + 4k_2)$$

$$k = \frac{1}{3} r_L c \ , \ r_L = \frac{p}{ZeB} \sim \frac{E}{cZeB}$$

$$k = \frac{1}{3} r_L c , \ r_L = \frac{p}{ZeB} \sim \frac{E}{cZeB}$$

• Es folgt für die Zyklus-Dauer für $k_1 = k_2$

$$t_{cycle} = \frac{20}{3} \frac{E}{c^2 \beta_{Schock} ZeB} \propto E$$

$$k = \frac{1}{3} r_L c , \ r_L = \frac{p}{ZeB} \sim \frac{E}{cZeB}$$

• Es folgt für die Zyklus-Dauer für $k_1 = k_2$

$$t_{cycle} = \frac{20}{3} \frac{E}{c^2 \beta_{Schock} ZeB} \propto E$$

• Erreichbare Energie:

$$E_{max} = \int_0^{t_{acc}} \frac{dE}{dt} dt = \int_0^{t_{acc}} \frac{E\beta_{Schock}}{\frac{20E}{3c^2\beta_{Schock}ZeB}} = \frac{3}{20}\beta_{Schock}^2 C^2 ZeBt_{acc}$$

$$k = \frac{1}{3} r_L c , \ r_L = \frac{p}{ZeB} \sim \frac{E}{cZeB}$$

• Es folgt für die Zyklus-Dauer für $k_1 = k_2$

$$t_{cycle} = \frac{20}{3} \frac{E}{c^2 \beta_{Schock} ZeB} \propto E$$

• Erreichbare Energie:

$$E_{max} = \int_0^{t_{acc}} \frac{dE}{dt} dt = \int_0^{t_{acc}} \frac{E\beta_{Schock}}{\frac{20E}{3c^2\beta_{Schock}ZeB}} = \frac{3}{20}\beta_{Schock}^2 C^2 ZeBt_{acc}$$

- Für typische Werte ($\beta_{Schock} \sim 0.03$, B ~ 0.3 nT, t_{acc} ~ 1000 Jahre) E_{max} ~ 10¹⁴ eV (für Protonen)
- bis zum Knie der Verteilung

