Standard Model precision measurements at high energies basically: LEP, (SLC, ILC)

- e⁺e⁻ accelerators: LEP, SLC, ILC
- the OPAL experiment at LEP
- LEP final states
- Z⁰ resonance and the Standard Model of electroweak interactions
- measurements of electroweak parameters
- some highlights ...
- search for the Higgs-Boson
- further topics at LEP

Standard Model precision measurements

e⁺e⁻ annihilation:

- point-like particles
- well known quantum numbers and energies of initial and final state
- no hadronic (strong) interactions in initial state; no "underlying" or remnant event

<--> precision!

technical requirements:

- precise knowledge of e⁺e⁻ energies (accelerator)
- precise knowledge of luminosity (special detectors) e7
- precise measurement & classification of all final states (detectors)

CERN / Genf

ar a

LEP (1989-2000) SPS LHC (2008-2035)

LEP-Parameter

(Electron -	Positron	Collider a	at centre-of-mass	energies E _{cm}	up to 209	GeV)
`				\mathcal{O}	i 1	/

	LEP-I	LEP-II
Strahlenergie bis	55 GeV	$\approx 100 \text{ GeV}$
Magnet-Dipolfeld	0.065 T	0.111 T
BeschlSpannung pro Umlauf	260 MeV	2700 MeV
Klystron Leistung	16 MW	16 MW
Hohlraumresonatoren	Cu (normalleitend)	Cu-Nb (supraleitend)
	128 in P2 und P6	272 in P2,4,6,8
Beschleunigungsspannung	1.5 MV/m	6 MV/m
Strahlstöme	3 mA	5 mA
Zahl der e+e- Pakete	4 x 4	4 x 4 (x 2 bunchlets)
max Luminosität	$1.6 \cdot 10^{31} \text{ cm}^{-2} \text{s}^{-1}$	$5 \cdot 10^{31} \text{ cm}^{-2}\text{s}^{-1}$
Energieunschärfe	70 MeV	280 MeV
sys. Energiefehler	1.4 MeV	25-30 MeV
Strahllebensdauer:	$\approx 6 - 8 h$	$\approx 5 h$

Energiekalibration:durch resonante Depolarisation der sich
selbständig aufbauenden Strahlpolarisation;
durchgeführt bei geeigneten Strahlenergien (z.Z.
bis ca 55 GeV), sowie Extrapolation auf höhere
Energien mit flux-loop-Messungen.

<u>max. Strahlenergie:</u> 104.5 GeV $\rightarrow \sqrt{s} = 209 \text{ GeV}$ (Herbst 2000)

LEP - superconducting accelerating cavities

SLAC Linear Collider (SLC)

- e⁻ up to 50 GeV; fixed-target program (until 1980's)
- e^- and e^+ for PEP-I storage rings (E_{cm} = 29 GeV; early 1980's)
- e^- and e^+ for SLC collider ($E_{cm} = M_Z \sim 91$ GeV; 1989 1999)
- $\bullet~e^{\scriptscriptstyle -}$ and $e^{\scriptscriptstyle +}$ for PEP-II storage rings (E_cm ~10 GeV; 1999 2008)

SLC:

- substantially smaller luminosities and data statistics than LEP (e-, e+ are not recycled but are dumped after each collision)
- + polarisation of e⁻ beam up to 80% (polarised e- -source; conservation of polarisation due to ~absence of synchrotron radiation)

Particle Physics with Cosmic and with Terrestrial Particle Accelerators TUM SS16 S.Bethke, F. Simon V5: Standard Model Precision Measurements

final states of high energy reactions at LEP

11

final states of high energy reactions at LEP

hadronic cross section

minimal SM in lowest order (*"Born Approximation"*) describes processes like $e^+e^- \rightarrow f\bar{f}$ using only 3 free parameters:

 $\begin{array}{ll} \alpha & [fine structure constant] \\ G_F & [Fermi constant; from <math>\mu$ lifetime] \\ sin^2 \theta_W & [weak mixing angle; from v-N-scattering] \end{array}

or:
$$\alpha$$
, \mathbf{G}_{F} and \mathbf{M}_{Z} (since $\sin^2\theta_W \cos^2\theta_W = \frac{\pi\alpha}{G_F\sqrt{2}}\frac{1}{M_Z^2}$)

 $\frac{\text{cross sections around } Z^0 \text{ resonance } (f \neq e):}{\sigma_f(s) = \sigma_f^0 \cdot \frac{s \Gamma_z}{\left(s - M_z^2\right)^2 + M_z^2 \Gamma_z^2} + "\gamma" + "\gamma Z"}$ $\sigma_f^0 = \frac{12 \pi}{M_z^2} \cdot \frac{\Gamma_e \Gamma_f}{\Gamma_z^2} \text{ (pole cross sections; } \Sigma \Gamma_f = \Gamma_z)$

Measurement of s-dependent cross sections around the Z⁰ resonance and adjustment of $\sigma_f(s)$, σ_f^0 provides model independent results for:

$$M_{Z}^{}, \Gamma_{Z}^{}, \Gamma_{f}^{}, \sigma_{f}^{0}$$

SM: Γ_{f} are <u>no free parameters</u>, they are parametrised as functions of the *vector* and *axial vector constants*:

$$\Gamma_{\rm f} = \frac{G_{\rm f} M_{\rm z}^3}{6\pi \sqrt{2}} \cdot [g_{\rm a,f}^2 + g_{\rm v,f}^2] \cdot N_{\rm c,f} \quad \begin{cases} \text{colour factor;} \equiv 3 \text{ for quarks,} \\ \equiv 1 \text{ for leptons.} \end{cases}$$
$$g_{\rm a,f} = I_{\rm 3,f} \qquad (3^{\rm rd} \text{ component of weak isospin;} = \pm 1/2)$$
$$g_{\rm v,f} = I_{\rm 3,f} - 2 Q \sin^2 \theta_{\rm w}$$

radiation corrections in Standard Model:

photonic corrections:

corrections ~ 100%, selection dependent; factorisable: $(1 + \delta_{rad})$

non-photonic corrections:

$$--(f)$$
 $+ z$ $+$

corrections $\sim 10\%$, selection independent; can be absorbed in running couplings:

•
$$\sin^2 \theta_{\text{eff}}(s)$$
 • $\alpha(s) = \frac{\alpha}{1 - \Delta \alpha}$; $\Delta \alpha = 0.064$ bei $\sqrt{s} = M_Z$
• $N_{c,f} \left(1 + \frac{\alpha_s}{\pi} + 1.4 \left(\frac{\alpha_s}{\pi} \right)^2 + ... \right)$ (für Quarks)
• $\frac{M_W^2}{M_Z^2} = \rho \cdot \cos^2 \theta_w$ mit $\rho = \frac{1}{1 - \Delta \rho}$; $\Delta \rho = 0.0026 \frac{M_t^2}{M_Z^2} - 0.0015 \ln \left(\frac{M_H}{M_w} \right)$

insertion of running couplings in "Born"-approximation :

partial Z decay widths
$$\Gamma_{f} = \frac{G_{f} M_{z}^{3}}{6\pi\sqrt{2}} \left[g_{a,f}^{2} + g_{v,f}^{2} \right] N_{c,f}$$
 (and also
cross sections) acquire dependence on: • M_{t}
• M_{H}

==> indirect determination (fit) of M_t , M_H , and α_s from combination of all available electroweak observables

(differential cross sections, partial decay widths, forward-backward asymmetries, τ -polarisation, left-right asymmetries (SLC))

$$g_{a,f} = I_{3,f}$$
 (3. Komponente schw. Isospin; =±1/2)
 $g_{v,f} = I_{3,f} - 2Q\sin^2 \theta_w$

Further Observables to be measured:

• differential cross sections: $\frac{d \sigma_{f}}{d \cos \theta} \propto A \cdot (1 + \cos^{2} \theta) + B \cdot \cos \theta$ \overline{f}

A and B include terms for γ - and Z⁰-exchange as well as for γ -Z⁰-interference, which depend on

 $(g_{a,e}^2 + g_{v,e}^2), (g_{a,f}^2 + g_{v,f}^2), (g_{a,e} \cdot g_{a,f}), (g_{v,e} \cdot g_{v,f}), \text{ and on}$

the relativistic Breit-Wigner resonance, $\frac{s}{s - M_z^2 + is\Gamma_z \ / \ M_z}$.

• forward-backward asymmetries:

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

 $N_{\rm F}$: number of events with $\theta < \pi/2$ $N_{\rm B}$: number of events with $\pi/2 < \theta < \pi$

on the Z⁰ pole:
$$A_{FB}^{0,f} = \frac{3}{4}A_eA_f$$

with $A_f = \frac{2g_{v,f} \cdot g_{a,f}}{g_{v,f}^2 + g_{a,f}^2} \qquad \left[\approx \frac{g_{v,f}}{g_{a,f}} \text{ for leptons} \right]$

• final state polarisations of leptons:

$$P_{f} = \frac{1}{\sigma_{tot}} \cdot (\sigma_{f}(h = +1) - \sigma_{f}(h = -1))$$

$$P_{f}(s = M_{z}) = -A_{f}$$

$$A_{FB}^{P_{f}}(s = M_{z}) = -\frac{3}{4}A_{e}$$

measurements and determinations of elektrweak parameters

Particle Physics with Cosmic and with Terrestrial Particle Accelerators TUM SS16 S.Bethke, F. Simon V5: Standard Model Precision Measurements

measurements and determinations of elektrweak parameters

(...after correcting for phases of the moon and for TGV time schedule!)

Highlights at LEP:

precision resultats on electroweak axial- und vector couplings

 $e^+e^- \rightarrow WW$

includes about 80% of all final states with about 40-50% selection efficiencies

analysis:

- each experiment determines 3 observables, for each hypothetical Higgs-mass, and for each decay channel:
 - $-N_{obs}$ (number of candidate events)
 - $-N_{sig}$ (number of expected signal events from model calculations)
 - $-N_{BG}$ (number of expected background events from model calcs.)
- statistical evaluation based on "likelyhood" parameters: test-statistics; likelyhood functions; confidence intervals. [Junk, Bock]
- combination of results from various decay channels and from all 4 LEP experiments

status July 2000: no hint for the Higgs; $M_H > 113.3 \text{ GeV/c}^2$ (95% CL) [final status July 2001: $M_H > 114.1 \text{ GeV/c}^2$]

- 5. Sept. 2000: ALEPH sees excess in 4-Jet channel, compatible with $M_{\rm H} \sim 115 \text{ GeV/c}^2$. LEP-combination: 2.2 σ excess over background
- 14. Sept. 2000: LEP-shutdown extended by 1 month, until 2. November 2000
- 3. Nov. 2000:further candidate events increase significance to 2.9 σ.
LEP-experiments ask for LEP run in 2001
[status July 2001: after re-analyses (calibration) only 2.1 σ !]

8. Nov. 2000: LEP irrevocably shut down.

(from radiation corrections / global fits)

		- 1 -	- 2 -	- 3 -	- 4 -	- 5 -	- 6 -
		LEP including LEP-II m _W , Γ _W	all Z-pole data	all Z-pole data plus m _t	all Z-pole data plus mw, Гw	all data except NuTeV	all data
$m_{\rm t}$	[GeV]	184^{+13}_{-11}	171^{+11}_{-9}	$173.6^{+4.7}_{-4.6}$	180^{+11}_{-9}	$175.4_{-4.2}^{+4.3}$	$174.3^{+4.5}_{-4.3}$
$m_{\rm H}$	[GeV]	228^{+367}_{-136}	81^{+107}_{-40}	99^{+64}_{-40}	117^{+161}_{-63}	78^{+48}_{-31}	81^{+52}_{-33}
$\log(m_{\rm H})$	$_{\rm H}/{ m GeV}$	$2.36\substack{+0.42\\-0.39}$	$1.91\substack{+0.37\\-0.30}$	$1.99_{-0.23}^{+0.22}$	$2.07\substack{+0.38\\-0.33}$	$1.89^{+0.21}_{-0.22}$	$1.91^{+0.22}_{-0.23}$
$\alpha_{S}($	$m_{\mathbf{Z}}^2)$	0.1199 ± 0.0030	0.1186 ± 0.0027	0.1187 ± 0.0027	0.1185 ± 0.0027	0.1181 ± 0.0027	0.1183 ± 0.0027
$\chi^2/d.c$	o.f. (P)	13.3/9~(15%)	14.8/10 (14%)	14.9/11~(19%)	17.9/12~(12%)	20.5/14~(11%)	29.7/15~(1.3%)
\sin^2	$\theta_{\text{eff}}^{\text{lept}}$	0.23160	0.23145	0.23145	0.23135	0.23131	0.23136
		± 0.00018	± 0.00016	± 0.00016	± 0.00015	± 0.00015	± 0.00015
\sin^2	$^{2} \theta_{W}$	0.22284	0.22313	0.22299	0.22240	0.22255	0.22272
		± 0.00053	± 0.00063	± 0.00045	± 0.00045	± 0.00036	± 0.00036
$m_{\mathbf{W}}$	[GeV]	80.388 ± 0.027	80.373 ± 0.032	80.380 ± 0.023	80.410 ± 0.023	80.403 ± 0.019	80.394 ± 0.019

Table 16.2: Results of the fits to: (1) LEP data alone, (2) all Z-pole data (LEP-1 and SLD), (3) all Z-pole data plus direct $m_{\rm t}$ determinations, (4) all Z-pole data plus direct $m_{\rm W}$ and direct $\Gamma_{\rm W}$ determinations, (5) all data (including APV) except NuTeV, and (6) all data. As the sensitivity to $m_{\rm H}$ is logarithmic, both $m_{\rm H}$ as well as log($m_{\rm H}/{\rm GeV}$) are quoted. The bottom part of the table lists derived results for $\sin^2 \theta_{\rm eff}^{\rm lept}$, $\sin^2 \theta_{\rm W}$ and $m_{\rm W}$. See text for a discussion of theoretical errors not included in the errors above.

* M_H < 185 GeV (95% c.l.)

from direct search: 114.1(LEP) 115.5 (LHC) $< M_H < 131 \text{ GeV/c}^2$ (LHC) indirectly radiation corrections: $M_H < 186 (157) \text{ GeV/c}^2 (95\% \text{ CL})$

Juli 2012: Higgs discovered at LHC; 2015: $M_H = 125.09 \pm 0.24$ GeV

comparison of direct measurement with fit of radiative corrections:

(m_t, m_w measured) (fit, from rad. corr.)

- good agreement
- "light Higgs" preferred from rad. corr.

further topics at LEP:

- Tests of Strong Interaction (QCD)
- Physics of heavy Quarks
- Search for new particles (SUSY et al...)
- 2-Photon Physics
- ... (~ 1400 Publications 1989 2002)

Future: ILC (?)

International Linear Collider (ILC)

Main Linac

500 GeV c.m. e+e-

 $L \sim 2.10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (400 x LEP)

Damping Rings

project under discussion at Japan; operation starting 2028?

Main Linas

and a second and a second second second

31 km

International Linear Collider (ILC) physics menu

Energy	Reaction	Physics Goal	Polarization
91 GeV	$e^+e^- \rightarrow Z$	ultra-precision electroweak	Α
160 GeV	$e^+e^- \rightarrow WW$	ultra-precision W mass	н
250 GeV	$e^+e^- \rightarrow Zh$	precision Higgs couplings	н
350-400 GeV	$e^+e^- \rightarrow t\overline{t}$	top quark mass and couplings	Α
	$e^+e^- \rightarrow WW$	precision W couplings	н
	$e^+e^- ightarrow u \overline{ u} h$	precision Higgs couplings	L
500 GeV	$e^+e^- \rightarrow f\overline{f}$	precision search for Z'	Α
	$e^+e^- \rightarrow t\overline{t}h$	Higgs coupling to top	н
	$e^+e^- \rightarrow Zhh$	Higgs self-coupling	н
	$e^+e^- \rightarrow \tilde{\chi}\tilde{\chi}$	search for supersymmetry	B
	$e^+e^- \rightarrow AH, H^+H^-$	search for extended Higgs states	B
700-1000 GeV	$e^+e^- \rightarrow \nu \overline{\nu} hh$	Higgs self-coupling	L
	$e^+e^- \rightarrow \nu \overline{\nu} V V$	composite Higgs sector	L
	$e^+e^- ightarrow u \overline{ u} t \overline{t}$	composite Higgs and top	L
	$e^+e^- \rightarrow \tilde{t}\tilde{t}^*$	search for supersymmetry	B

ILC: precision of Higgs coupling

Mode	LHC	ILC(250)	ILC500	ILC(1000)
WW	4.1 %	1.9 %	0.24 %	0.17 %
ZZ	4.5 %	0.44 %	0.30 %	0.27 %
$b\overline{b}$	13.6 %	2.7 %	0.94 %	0.69 %
<u>gg</u>	8.9 %	4.0 %	2.0 %	1.4 %
$\gamma\gamma$	7.8 %	4.9 %	4.3 %	3.3 %
$\tau^+\tau^-$	11.4 %	3.3 %	1.9 %	1.4 %
cc	-	4.7 %	2.5 %	2.1 %
$t\overline{t}$	15.6 %	14.2 %	9.3 %	3.7 %
$\mu^+\mu^-$	-	_	-	16 %
self	-	-	104%	26 %
BR(invis.)	< 9%	< 0.44 %	< 0.30 %	< 0.26 %
$\Gamma_T(h)$	20.3%	4.8 %	1.6 %	1.2 %

ILC: precision of Higgs coupling

<u>Literature:</u>

G. Altarelli, M. Grünewald, Precision Electroweak Tests of the Standard Model, Phys. Rept. 403-404 (2004), 189-201, hep-ph/0404165

K. Desch, N. Wermes, *Das Higgs-Boson: wie nahe dran ist LEP?*, Physikalische Blätter 56, Vol. 4 (2000) 35-39.

S. Bethke, Standard Model Physics at LEP, hep-ex/0001023.

.... kompletter Überblick über LEP Physik in: Phys. Rept. 403-404 (2004)

LEP Electroweak Working Group: http://lepewwg.web.cern.ch/LEPEWWG

www.linearcollider.org

next lecture: "QCD and Jet-Physics at e+e- colliders", 23.5.15