Teilchenphysik mit kosmischen und mit erdgebundenen Beschleunigern

8. Cosmic Rays II

20.06.2016

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Prof. Dr. Siegfried Bethke Dr. Frank Simon

Neutral Cosmic Rays

Electromagnetic Radiation

Electromagnetic Radiation & The Atmosphere

A+ Ay>it

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2016, 10: Cosmic Rays II

4

Emission of Electromagnetic Radiation

- Thermal Radiation:
 - for example the sun: Emits at 5700 K (surface temperature of the sun)
 - Two-particle interactions lead to thermal equilibrium

$$\propto e^{-\frac{E}{kT}}$$

- Non-thermal radiation:
 - low density of plasma particles
 - a few particles can reach very high energies in interactions

$$\propto E^{-\gamma}$$

• Thermal and non-thermal components of a gas can exist in parallel and can interact with each other

Cosmic Background

Annu. Rev. Astron. Astrophys. 9, 89 (1991)

1. Radio background, synchrotron radiation of e⁻ in galactic B field 2. Microwave background, 2.7 K 3. Emissions of cold interstellar dust 4. Emissions of distant galaxies 5. Hot interstellar dust 6. Optical background: scattering of sunlight on interstellar dust 7. Ionised intergalactic medium 8.X-ray background

9. Diffuse gamma background

• Central regions of the Milky Way hidden by dust

• Dust in the Milky Way transparent to IR: Observation of the galactic center

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2016, 10: Cosmic Rays II

9

• Combination of all wavelengths provides a detailed picture

An Example: Cen A

- Combined image of Centaurus A, an active galaxy at a distance of 10 Mlyr
 - visible light: white
 - sub-mm: orange
 - x-ray: blue

Credit: X-ray: NASA/CXC/CfA/R.Kraft et al.; Submillimeter: MPIfR/ESO/APEX/A.Weiss et al.; Optical: ESO/WFI

Photons: "Acceleration"

- Photons themselves are not accelerated since they are uncharged
- The energy originates from charged particles
- Acceleration of charged particles in shock fronts
- Conversion to photons through various processes
- The photons only receive a fraction of the energy of the primary particle
- Photons are substantially suppressed compared to hadrons at the same energy
- In the TeV region:

 $Flux(\gamma) \sim 10^{-4} x Flux(hadrons)$

A challenge for experiments: Excellent photon/hadron separation required

Photon Production

- Accelerated charges emit radiation
- On circular orbits in magnetic fields: Synchrotron radiation

 Acceleration (deceleration!) in strong electric fields of nuclei: Bremsstrahlung

Photon Production

- Accelerated charges emit radiation
- On circular orbits in magnetic fields: Synchrotron radiation

 Acceleration (deceleration!) in strong electric fields of nuclei:
 Bromostroblung

Bremsstrahlung

In addition: Thermal radiation!

Photon Production II

 Hadronic production of photons via meson production in hadronic interactions and consecutive decay

$$p + Kern \rightarrow X + \pi^0$$
$$\pi^0 \rightarrow \gamma \gamma$$

 Energy increase of a photon via scattering off highly energetic electrons: (inverse Compton scattering)

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern: SS 2016, 10: Cosmic Rays II

Meson Decay

(2) Meson produced

(1) Proton hits nucleus

(3) Meson decays into gamma rays

Expected Gamma Ray Spectrum of Sources

Depends on the mechanism of γ creation

Expected Gamma Ray Spectrum of Sources

Depends on the mechanism of γ creation

Expected Gamma Ray Spectrum of Sources

Depends on the mechanism of γ creation

Gamma Creation: The General Idea

Direct Measurement: Satellites: Chandra

Direct Measurement: Satellites: Fermi

- Satellites can cover the full sky
- Good resolution at relatively low energies

- The newest instrument: Fermi (formerly GLAST (Gammaray Large Area Telescope))
 - started on 11.06.2008

The Fermi Sky

Photon and Hadron - induced Air Showers

Airshower Cherenkov Telescopes

- Cherenkov light is created by electrons in showers in an altitude of ~ 10 km
- The photons are spread over an area with a radius of~120 m on ground level
- Detection with a telescope is possible within this area.

Large IACTs

TA+ DI>tt

MAGIC: A large Cherenkov Telescope

17 m mirror diameter (240 m²)

ultralight construction (carbon fiber)

Active mirror control: Correction of mechanical distortions

AA+ Ay>tt

MAGIC

MAGIC: Separation of Photons and Hadrons

SNR IC 443

blue: x-ray green: radio red: optical

Neutron star

Supernova remnant, 3000 to 30 000 years old, distance 1.5 kpc

Credit: Chandra X-ray: NASA/CXC/B.Gaensler et al; ROSAT X-ray: NASA/ROSAT/Asaoka & Aschenbach; Radio Wide: NRC/DRAO/D.Leahy; Radio Detail: NRAO/VLA; Optical: DSS

SNR IC 443 bei hochenergetischen Gammas

Supernova Acceleration: Age & Energy

• Age dependence of cosmic accelerators

~ 1000 years needed to reach peak energy (see lecture 4)

Weakening of shock wave and magnetic fields with increasing age

Active Galactic Nuclei: AGNs

- Supermassive black holes (10⁷ 10¹⁰ solar masses) in the center of galaxies
- Accretion of matter
 - depending on configuration a jet can be formed

Formation of Gammas in Jets

- Electrons and protons are accelerated in shock fronts
- Synchrotron radiation in magnetic fields
- Inverse Compton processes
- Proton induced cascades resulting in photons from neutral pion decay

AGN M87

Blazars: Special AGNs

- A class of objects that exhibits strong gamma emission with pronounced time variations
 - first observation for BL Lacertae (BL Lac)
- AGN with a jet that points almost directly at earth
- Additional intensity gain due to relativistic effects
 - Time variation for example due to overtaking shock fronts that run through regions filled with matter, ...

AGNs: Photon Spectrum

• Typical "double hump" structure observed

Low Energy Cosmic Rays

AMS

- A complete particle physics detector in space
 - The goal: Search for antimatter in cosmic rays, detailed study of the composition, search for new phenomena

AMS

AMS - Since 4 years on the ISS

• Successful start on May 16 2011 - Data taking since then

AMS - Illustration of Events

20 GeV electron

AMS - Illustration of Events

Composition of Cosmic Rays

- Comparison to the isotope abundance in the solar system (known from absorption lines in the sun, meteorites)
- Agreement for medium-mass nuclei: Maxima for even Z, A: stable nuclei preferred in fusion reactions in stars
- Deviation for light nuclei: Acceleration less efficient for H, He
- Li, Be, B are "burned" in stars instantly
 - Elements heavier than Li do not occur primordially
 - these are created in cosmic rays via spallation

Energy Dependence of Composition

Boron does not occur in primary cosmic rays: production via spallation, Carbon is a primary component

Boron observed predominantly at low energy!

Energy Dependence of Composition

CREAM 2008

Both Oxygen and Carbon are primary particles in cosmic rays, both have Z/A = 0.5: identical energy spectrum!

Positrons in Cosmic Rays

• Interesting (and unexpected!) results by PAMELA (Nature, April 2009):

arXiv:0810.4995

Positrons in Cosmic Rays

• Interesting (and unexpected!) results by PAMELA (Nature, April 2009):

arXiv:0810.4995

Possible Explanation: Dark Matter

 Triggered a lot of activity: Several hundred papers with Dark Matter interpretations of PAMELA data within a few months

Would lead to a "Peak" in positrons, at higher energies the curve should go back to the expected behavior

Dark Matter: Consequence on Positron Fraction

Less Spectacular Explanation

- There has to be another primary source of positrons!
 - Production von positrons for example in near-by pulsars: Highly energetic gamma rays produce e⁺e⁻ pairs

Electrons (and positrons) quickly loose energy in the ISM via Compton scattering and synchrotron radiation → Sources for highly-energetic positrons have to be close!

Electrons and Positrons from Pulsars

 \Rightarrow The PAMELA results can also be explained by a few (or a single) close pulsar, candidates do exist!

Electrons and Positrons from Pulsars

 \Rightarrow The PAMELA results can also be explained by a few (or a single) close pulsar, candidates do exist!

Confirmation by AMS and Fermi

- AMS proves: the effect is real
 also supported by Fermi results
 - Detailed analyses show (up to now) no anisotropy in the distribution of the positron
 excess - no preferred
 direction

Positron Excess: What is it?

- Slope of the curve reaches
 0 at high energy: Maximum
 may be reached by
 experiments
- Continuation to higher

 energy crucial for
 interpretation: Dark matter
 predicts steep drop, pulsars
 would lead to a slower
 drop, and a dipole
 asymmetry

Positron Excess: What is it?

- Slope of the curve reaches
 0 at high energy: Maximum
 may be reached by
 experiments
- Continuation to higher

 energy crucial for
 interpretation: Dark matter
 predicts steep drop, pulsars
 would lead to a slower
 drop, and a dipole
 asymmetry

Consistent with "particle physics origin" (Dark Matter), but other explanations can not be excluded: Pulsars, possible mistakes in propagation models, ...

Summary

- Electromagnetic radiation is important: The combination of different spectral ranges allows detailed investigations of sources
- Highly energetic photons are observed with Cherenkov telescopes
 - Production via synchrotron radiation, inverse Compton processes and hadron decays
 - Provides insight into acceleration mechanisms
- Gamma sources in the Milky Way and beyond:
 - Pulsars
 - Active galactic nuclei, Blazars
- Composition of cosmic rays at low energy well understood primary and secondary components
- Exciting observation: Positron excess A hint of New Physics, or pulsars or shortcomings of our understanding of particle propagation in the galaxy?

Summary

- Electromagnetic radiation is important: The combination of different spectral ranges allows detailed investigations of sources
- Highly energetic photons are observed with Cherenkov telescopes
 - Production via synchrotron radiation, inverse Compton processes and hadron decays
 - Provides insight into acceleration mechanisms
- Gamma sources in the Milky Way and beyond:
 - Pulsars
 - Active galactic nuclei, Blazars
- Composition of cosmic rays at low energy well understood primary and secondary components
- Exciting observation: Positron excess A hint of New Physics, or pulsars or shortcomings of our understanding of particle propagation in the galaxy?

Next Lecture: 27.06., "Dark Matter & Dark Energy", S. Bethke

Topics Overview

11.04.	Einführung / Introduction
18.04.	Erdgebundene Beschleuniger / Accelerators
25.04.	Detektoren in der Nicht-Beschleuniger-Physik / Detectors
02.05.	Kosmische Beschleuniger / Cosmic Accelerators
09.05.	Das Standardmodell / The Standard Model
16.05.	Pfingsten - Keine Vorlesung! No Lecture
23.05.	QCD und Jet Physik an Lepton Beschleunigern / QCD and Jets
30.05.	Präzisionsexperimente (g-2) / Precision Experiments
06.06.	Gravitationswellen / Gravitational Waves
13.06.	Kosmische Strahlung I / Cosmic Rays I
20.06.	Kosmische Strahlung II / Cosmic Rays II
27.06.	Dunkle Materie & Dunkle Energie / Dark Matter & Dark Energy
04.07.	Neutrinos I
11.07.	Neutrinos II

