R-evolution

Ambar Jain
with Andre H. Hoang, Ignazio Scimemi and lain W. Stewart

Objective

- Convert between mass schemes without large logs - use a new RGE
- a threshold "MSR mass" that smoothly matches on to MS mass without threshold corrections
- a new way to analyze renormalons in OPE

Renormalon Formals

Borel Summation

pole mass with bubble chain

$$
i S(p, m)=\frac{i}{\not p-m-\Sigma(p, m)}
$$

full quark propagator

$$
\not p-m-\left.\Sigma(p, m)\right|_{p^{2}=m_{\text {pole }}^{2}}=0
$$

pole mass
't Hooft (1976)
Bigi et. al. (1994)
Beneke \& Braun (1994)

$$
B\left[m_{\text {pole }}-\bar{m}\right](u) \underset{u \sim \frac{1}{2}}{\sim} \frac{4 \mu}{3 \pi \beta_{0}}\left(\frac{e^{5 / 6}}{u-1 / 2}\right)+\ldots
$$

$$
\operatorname{Amb}\left[m_{\text {pole }}\right]=i \Lambda_{\mathrm{QCD}} \frac{8 e^{5 / 6}}{3 \beta_{0}}
$$

IR Scale \& Short Distance Masses

pole mass relation to other schemes
$m(R)=m_{\text {pole }}-\delta m(R, \mu=R)$
$\delta m(R)=R\left[a_{1}\left(\frac{\alpha_{s}(R)}{4 \pi}\right)+a_{2}\left(\frac{\alpha_{s}(R)}{4 \pi}\right)^{2}+\ldots\right]$

Introduces an IR

 scale "R"converting between schemes
$m^{A}\left(R_{0}\right)-m^{B}\left(R_{1}\right)=R_{1}\left[a_{1}^{\prime}\left(\frac{\alpha_{s}\left(R_{1}\right)}{4 \pi}\right)+a_{2}^{\prime}\left(\frac{\alpha_{s}\left(R_{1}\right)}{4 \pi}\right)^{2}+\ldots\right]$
$-R_{0}\left[a_{1}\left(\frac{\alpha_{s}\left(R_{1}\right)}{4 \pi}\right)+\left(a_{2}+\beta_{0} \log \left(R_{1} / R_{0}\right)\right)\left(\frac{\alpha_{s}\left(R_{1}\right)}{4 \pi}\right)^{2}+\ldots\right]$

IR Scale \& Matrix Elements

Observable

$$
\mathcal{O}=C_{1}(M, \mu) Q_{1}(\mu)+C_{2}(M, \mu) \frac{Q_{2}(\mu)}{M}+\ldots
$$

$$
\operatorname{Amb}\left[C_{1}\right] \sim \frac{\Lambda_{\mathrm{QCD}}}{M} \quad \& \quad\left[Q_{1}\right]=d \Rightarrow \operatorname{Amb}\left[Q_{2}\right] \sim \Lambda^{d+1}
$$

Define: $\quad C_{1}^{(R)}(M, \mu)=C_{1}(M, \mu)-\frac{R}{M} \delta C_{1}(M, \mu, R)$

$$
\mathcal{O}=C_{1}^{(R)}(M, \mu) Q_{1}(\mu)+C_{2}(M, \mu) \frac{Q_{2}^{(R)}(\mu)}{M}+\ldots
$$

$$
\delta Q_{2}(\mu, R)=-R \frac{\delta C_{1}(M, \mu, R)}{C_{2}(M, \mu)} Q_{1}(\mu)
$$

How to define $\delta \mathrm{C}_{1}$? Will see later!

scheme	R	R bottom	$\mathrm{R}_{\text {top }}$	process	Reference
$\overline{\mathrm{MS}}$	$\overline{\mathrm{m}}$	4.2	163		text book
1 S		1.5	25	Y decay, $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Q} \overline{\mathrm{Q}}$ (threshold)	Hoang, Ligeti, Manohar (1999)
PS	μ_{f}	2	20	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Q} \overline{\mathrm{Q}}$ (threshold)	Beneke (1998)
kinetic	$\mu_{f(k i n)}$	1	20	$\mathrm{b} \rightarrow \mathrm{c}$ decays	Bigi ,Shifman, Uraltsev (1997)
SF	$\mu_{f(S F)}$	1	-	$b \rightarrow X_{s} \gamma$	Bosch, Lange, Neubert, Paz (2004)
RGI	mRGI	5	170	Lattice QCD	Floratos et. al. (1979)
jet	$\mathrm{R}_{\mathrm{jet}}$	-	2	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{tt} \rightarrow \mathrm{j} j$	AJ, Scimemi, Stewart (2008)
MSR	R	!!	!!		Hoang, AJ, Scimemi, Stewart (2008)

Scheme Mania $\quad m_{m a n}=m(t)+n \sum_{m} \cdots a y(t)$

scheme	R	Rbottom	$\mathrm{R}_{\text {top }}$	process	[?]
MS	$\overline{\mathrm{m}}$	4.2	163		text book
1 S	mis $\mathrm{C}_{\text {F }} \alpha_{\text {s }}$	1.5	25	\bigcirc decay, $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Q}$ (threshold)	Hoang, Ligeti, Manohar (1999)
PS	μ_{f}	2	20	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Q} \overline{\mathrm{Q}}$ (threshold)	Beneke (1998)
kinetic	$\mu_{f(k i n)}$	1	20	$\mathrm{b} \rightarrow \mathrm{c}$ decays	Bigi ,Shifman, Uraltsev (1997)
SF	$\mu_{f(S F)}$	1	-	$b \rightarrow X_{s} \gamma$	Bosch, Lange, Neubert, Paz (2004)
RGI	mRGI	5	170	Lattice QCD	Floratos et. al. (1979)
jet	$\mathrm{R}_{\mathrm{jet}}$	-	2	$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{tt} \rightarrow \mathrm{j} j$	AJ, Scimemi, Stewart (2008)
MSR	R	1-4.2	1-163		Hoang, AJ, Scimemi, Stewart (2008)

Schemes Mania contd. : λ_{1}

$$
\lambda_{1}=\langle B| \bar{b}_{v}\left(i D_{\perp}\right)^{2} b_{v}|B\rangle
$$

kinetic energy operator

(1) $\lambda_{1}^{\mathrm{kin}}(R)=\lim _{\vec{v} \rightarrow 0} \lim _{m_{Q} \rightarrow 0} \frac{3}{\overrightarrow{\vec{v}}^{2}} \frac{\int_{0}^{R} \omega^{2} w(\omega, \vec{v}) d \omega}{\int_{0}^{R} w(\omega, \vec{v}) d \omega}$

kinetic scheme

Czarnecki, Melnikov, Uraltsev
(1998)
(2)

$$
\begin{aligned}
\lambda_{1}^{\mathrm{FF}}\left(\mu_{f}, \mu\right) & =\frac{3 \int_{-\mu_{f}}^{\infty} d \omega \omega^{2} S(\omega, \mu)}{\int_{-\mu_{f}}^{\infty} d \omega S(\omega, \mu)} \\
-\mu_{\pi}^{2}\left(\mu_{f}, \mu_{f}\right) & =\lambda_{1}^{S \mathrm{~F}}\left(\mu_{f}, \mu_{f}\right)=\lambda_{1}-\delta \lambda_{1}^{\mathrm{SF}}\left(\mu_{f}\right)
\end{aligned}
$$

(3)

$$
\lambda_{1}^{\mathrm{i}}=\lambda_{1}-\delta \lambda_{1}^{\mathrm{i}}
$$

$$
\delta \lambda_{1}^{\mathrm{i}}=\left.\left\langle b_{v}\right| \bar{b}_{v}\left(i D_{\perp}\right)^{2} b_{v}\left|b_{v}\right\rangle\right|_{R} \sim R^{2}\left(\alpha_{s}^{2}+\ldots\right)
$$

MSR mass

$$
m_{\mathrm{pole}}-\bar{m}(\bar{m})=\delta \bar{m}(\mu=\bar{m})
$$

$$
\operatorname{Amb}[\delta \bar{m}(\bar{m})] \sim \Lambda_{\mathrm{QCD}}
$$

$$
\delta \bar{m}(\bar{m})=\bar{m}\left[\bar{a}_{1} \alpha_{s}(\bar{m})+\bar{a}_{2} \alpha_{s}^{2}(\bar{m})+\bar{a}_{3} \alpha_{s}^{3}(\bar{m})+\ldots\right]
$$

$$
\sim \bar{m}\left[\frac{\Lambda_{\mathrm{QCD}}}{\bar{m}}+\ldots\right]
$$

$$
R\left[\bar{a}_{1} \alpha_{s}(R)+\bar{a}_{2} \alpha_{s}^{2}(R)+\bar{a}_{3} \alpha_{s}^{3}(R)+\ldots\right] \equiv \delta m^{\mathrm{MSR}}(R)
$$

$$
m_{\text {pole }}-\delta m^{\mathrm{MSR}}(R)=m^{\mathrm{MSR}}(R)
$$

MSR and $\overline{M S}$ mass

$$
m_{\text {pole }}-m^{\mathrm{MSR}}(R)=\delta m^{\mathrm{MSR}}(R)
$$

$$
\delta m^{\mathrm{MSR}}(R) \equiv R\left[\bar{a}_{1} \alpha_{s}(R)+\bar{a}_{2} \alpha_{s}^{2}(R)+\bar{a}_{3} \alpha_{s}^{3}(R)+\ldots\right]
$$

$$
\text { - } \quad m^{\mathrm{MSR}}(R=\bar{m})=\bar{m}(\bar{m})
$$

- threshold scheme for $R \ll m$
- known to three loops in perturbation theory
- smoothly connects to MS mass if we can smoothly vary R

R-Scale and R-RGE

Renormalization Group Flow

increase μ : less UV in mass and more in matrix elements

R scale in PS mass

$$
\begin{aligned}
& m^{\mathrm{PS}}(R)=m_{\text {pole }}-\delta m^{\mathrm{PS}}(R) \\
& \delta m^{\mathrm{PS}}(R) \equiv-\frac{1}{2} \int_{|q|<R} \frac{d^{3} q}{(2 \pi)^{3}} V(q) \\
& -\delta m^{\mathrm{PS}}\left(R_{1}\right)=\int_{0}^{R_{0}} d q \frac{q^{2} V(q)}{4 \pi^{2}}+\int_{R_{0}}^{R_{1}} d q \frac{q^{2} V(q)}{4 \pi^{2}} \\
& \text { rentained in the sphere of radius } \mathrm{R}
\end{aligned}
$$ perturbative series for observables, into the mass parameter

R-RGE: Formulation

$$
R \frac{d}{d R}: \quad m(R)=m_{\text {pole }}-R\left[a_{1}\left(\frac{\alpha_{s}(R)}{4 \pi}\right)+a_{2}\left(\frac{\alpha_{s}(R)}{4 \pi}\right)^{2}+\ldots\right] \quad \text { \& } \quad R \frac{d \alpha_{s}(R)}{d R}=\beta\left[\alpha_{s}(R)\right]
$$

$$
\gamma_{0}, \gamma_{1}, \ldots \text { are }
$$

linear in a_{n} and β_{n}

$$
R \frac{d m(R)}{d R}=-R\left[\gamma_{0}\left(\frac{\alpha_{s}(R)}{4 \pi}\right)+\gamma_{1}\left(\frac{\alpha_{s}(R)}{4 \pi}\right)^{2}+\ldots\right]
$$

R-anomalous dimension
similar eqn. by
Bigi, Shifman, Uraltsev (1997)
generates a continuous class of schemes
$R \rightarrow R^{\prime}=\lambda R:$

$$
\begin{aligned}
& \gamma_{0} \rightarrow \gamma_{0}^{\prime}=\lambda \gamma_{0} \\
& \gamma_{1} \rightarrow \gamma_{1}^{\prime}=\lambda\left[\gamma_{1}-2 \beta_{0} \gamma_{0} \ln \lambda\right]
\end{aligned}
$$

scheme	$\Upsilon 0$
PS / MSR	$4 \mathrm{C}_{\mathrm{F}}$
kinetic	$16 \mathrm{C}_{\mathrm{F}} / 3$
jet	$2 \mathrm{C}_{\mathrm{F}} \mathrm{e}^{\gamma}$

μ-RGE vs. R-RGE comparison at leading log

$$
\begin{gathered}
\mu \frac{d \bar{m}(\mu)}{d \mu}=\bar{m} \bar{\gamma}_{0} \frac{\alpha_{s}(\mu)}{4 \pi} \\
\int \frac{d \bar{m}}{\bar{m}}=\bar{\gamma}_{0} \int \frac{d \mu}{\mu} \frac{\alpha_{s}(\mu)}{4 \pi} \\
\frac{d \mu}{\mu}=\frac{d \alpha_{s}}{\beta\left[\alpha_{s}\right]}
\end{gathered}
$$

$$
\begin{aligned}
R \frac{d m(R)}{d R} & =-\underline{R} \gamma_{0} \frac{\alpha_{s}(R)}{4 \pi} \\
\int d m(R) & =-\gamma_{0} \int d R \frac{\alpha_{s}(R)}{4 \pi}
\end{aligned}
$$

$$
\text { need solution of } \alpha_{s}-\text { RGE !!! }
$$

$\alpha_{s}-$ RGE: All order Solution

$$
\alpha_{s}-\text { RGE } \quad \int_{R_{0}}^{R_{1}} \frac{d R}{R}=\int_{\alpha_{1}}^{\alpha_{2}} \frac{d \alpha_{s}(R)}{\beta\left[\alpha_{s}(R)\right]}
$$

$$
\beta\left[\alpha_{s}(R)\right] \sim-\beta_{0} \alpha_{s}^{2}-\beta_{1} \alpha_{s}^{3}-\ldots
$$

$$
\text { change of variable } \quad t=-\frac{2 \pi}{\beta_{0} \alpha_{s}(R)}
$$

$$
\begin{aligned}
\hat{b}_{1} & =\frac{\beta_{1}}{2 \beta_{0}^{2}}, \\
\hat{b}_{2} & =\frac{\beta_{1}^{2}-\beta_{0} \beta_{2}}{4 \beta_{0}^{4}}
\end{aligned}
$$

$$
\Lambda_{\mathrm{QCD}}=R e^{t}(-t)^{\hat{b}_{1}} \exp \left(-\frac{\hat{b}_{2}}{t}-\frac{\hat{b}_{3}}{2 t^{2}}-\ldots\right)
$$

R-RGE : leading log solution

$$
\begin{aligned}
& \Lambda_{\mathrm{QCD}}^{(0)}=R e^{t} \quad t=-\frac{2 \pi}{\beta_{0} \alpha_{s}(R)} \\
& \int d m(R)=-\gamma_{0} \int d R \frac{\alpha_{s}(R)}{4 \pi} \\
& \\
& =\frac{\Lambda_{\mathrm{QCD}}^{(0)} \gamma_{0}}{2 \beta_{0}} \int_{t_{1}}^{t_{0}} d t \frac{e^{-t}}{t}
\end{aligned}
$$

$$
m\left(R_{1}\right)-m\left(R_{0}\right)=\frac{\Lambda_{\mathrm{QCD}}^{(0)} \gamma_{0}}{2 \beta_{0}}\left[\Gamma\left(0, t_{1}\right)-\Gamma\left(0, t_{0}\right)\right] \propto-\frac{\gamma_{0}^{R} R_{0}}{2 \beta_{0}} \sum_{n=0}^{\infty}\left[\frac{\beta_{0} \alpha_{1}}{2 \pi}\right]^{n+1} \sum_{k=n+1}^{\infty} \frac{n!}{k!} \ln ^{k} \frac{R_{1}}{R_{0}}
$$

R-RGE : all order solution

$$
\begin{aligned}
& \int_{t_{1}}^{t_{0}} d t \frac{e^{-t}}{(-t)^{n+\hat{b}_{1}}} \\
& S_{0}=\frac{\gamma_{0}}{2 \beta_{0}} \\
& S_{1}=\frac{\gamma_{1}}{\left(2 \beta_{0}\right)^{2}}-\left(\hat{b}_{1}+\hat{b}_{2}\right) \frac{\gamma_{0}}{2 \beta_{0}} \\
& {\left[m\left(R_{1}\right)-m\left(R_{0}\right)\right]^{\mathrm{N}^{k} \mathrm{LL}}=\Lambda_{\mathrm{QCD}}^{(k)} \sum_{j=0}^{k} S_{j}(-1)^{j} e^{i \pi \hat{b}_{1}}\left[\Gamma\left(-\hat{b}_{1}-j, t_{1}\right)-\Gamma\left(-\hat{b}_{1}-j, t_{0}\right)\right]}
\end{aligned}
$$

R-evolution : Message

R-evolution with MSR mass

Important for top precision era

へect
problematic fluctuations

directly obtain $\overline{M S}$ mass

R-RGE is generalizable for quantities with higher power IR sensitivity

An Application: Renormalon Sum Rules

Renormalon Sum Rule

$$
\begin{aligned}
& \Lambda_{\mathrm{QCD}}^{(0)}=R e^{t}(-t)^{\hat{b}_{1}} \quad \Longrightarrow \quad \lim _{R \rightarrow 0} \alpha_{s}(R)=0 \\
& \delta m(R)=R\left[a_{1}\left(\frac{\alpha_{s}}{4 \pi}\right)+a_{2}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}+\ldots\right] \xrightarrow{R \rightarrow 0} 0 \\
& \lim _{R_{0} \rightarrow 0} m\left(R_{0}\right)=m_{\text {pole }}
\end{aligned}
$$

Renormalon Sum Rule

$\mathrm{R} \rightarrow 0$ Limit + Asymptotic expansion + Borel Transform

$$
B\left[m_{\text {pole }}-m\left(R_{1}\right)\right](u)=R\left(\sum_{k=0}^{\infty} \frac{S_{k}}{\Gamma\left(1+\hat{b}_{1}+k\right)}\right) \times\left(\sum_{\ell=0}^{\infty} g_{\ell} \frac{\Gamma\left[1+\hat{b}_{1}-\ell\right]}{(1-2 u)^{1+b_{1}-\ell}}\right)+(\text { non singular near } u=1 / 2)
$$

Residue
Renormalon
Singularity

Renormalon Sum Rule

$\mathrm{R} \rightarrow 0$ Limit + Asymptotic expansion + Borel Transform

$$
B\left[m_{\text {pole }}-m\left(R_{1}\right)\right](u)=R \underbrace{\left(\sum_{k=0}^{\infty} \frac{S_{k}}{\Gamma\left(1+\hat{b}_{1}+k\right)}\right)}_{P_{1 / 2}} \times\binom{\left(\sum_{l=0}^{\infty} g \ell \frac{\Gamma\left[1+\hat{b}_{1}-\ell\right]}{(1-2 u)^{1+\hat{b}_{1}-\ell}}\right)}{\begin{gathered}
\text { Renormalon } \\
\text { Singularity }
\end{gathered}}+(\text { non singular near } u=1 / 2)
$$

A new way to test for renormalons !
$P_{1 / 2} \rightarrow 0 \Rightarrow$ no renormalon
$P_{1 / 2} \rightarrow$ number $\neq 0 \Rightarrow$ renormalon exists

Normalization of renormalon in

$$
P_{1 / 2}=\sum_{k=0}^{\infty} \frac{S_{k}}{\Gamma\left(1+\hat{b}_{1}+k\right)}
$$

pole mass

n_{f}	NNA	$\mathrm{P}_{\mathrm{I} / 2}$
3	0.68	0.45
4	0.74	0.47
5	0.80	0.48
6	0.88	0.48
7	0.97	0.43

Analyzing Renormalons in OPE

Renormalons in OPE and $\overline{\mathrm{MS}}$

Example: Chromomagnetic operator

$$
\begin{aligned}
& m_{B}=m_{b}+\bar{\Lambda}-\frac{\lambda_{1}}{2 m_{b}}-\frac{3 \lambda_{2}}{2 m_{b}}+\ldots \\
& m_{B^{*}}=m_{b}+\bar{\Lambda}-\frac{\lambda_{1}}{2 m_{b}}+\frac{\lambda_{2}}{2 m_{b}}+\ldots \\
& m_{B^{*}}^{2}-m_{B}^{2}=\frac{4}{3} C\left(m_{b}, \mu\right) \mu_{G}^{2}(\mu)+\ldots \\
& \frac{m_{B^{*}}^{2}-m_{B}^{2}}{m_{D^{*}}^{2}-m_{D}^{2}}=\frac{C\left(m_{b}, \mu\right)}{C\left(m_{c}, \mu\right)}+\ldots
\end{aligned}
$$

$$
\bar{\Lambda} \sim\langle B| \bar{b}_{v} i v . D b_{v}|B\rangle
$$

$$
\lambda_{1} \sim\langle B| \bar{b}_{v} D_{\perp}^{2} b_{v}|B\rangle
$$

$$
\lambda_{2} \sim C\left(m_{b}, \mu\right)\langle B| \bar{b}_{v} g \sigma_{\mu \nu} G^{\mu \nu} b_{v}|B\rangle(\mu)
$$

$C(m, \mu)$ known to three loops Grozin et. al. (2007)

B-D mass splitting ratio

$$
\begin{aligned}
\left.\frac{m_{B^{*}}^{2}-m_{B}^{2}}{m_{D^{*}}^{2}-m_{D}^{2}}\right|_{\frac{M S}{L P}} ^{L P} & =0.8517-0.0696-0.0908-[0.1285] \ldots \\
\left.\frac{m_{B^{*}}^{2}-m_{B}^{2}}{m_{D^{*}}^{2}-m_{D}^{2}}\right|_{\text {Grozin et. al. (2007) }} & =0.88
\end{aligned}
$$

$$
\mathcal{O}=C_{1}(M, \mu) Q_{1}(\mu)+C_{2}(M, \mu) \frac{Q_{2}(\mu)}{M}+\ldots
$$

Define: $\quad C_{1}^{(R)}(M, \mu)=C_{1}(M, \mu)-\frac{R}{M} \delta C_{1}(M, \mu, R)$

Generics:
Reminder

$$
\mathcal{O}=C_{1}^{(R)}(M, \mu) Q_{1}(\mu)+C_{2}(M, \mu) \frac{Q_{2}^{(R)}(\mu)}{M}+\ldots
$$

$$
\delta Q_{2}(\mu, R)=-R \frac{\delta C_{1}(M, \mu, R)}{C_{2}(M, \mu)} Q_{1}(\mu)
$$

How to define $\delta \mathrm{C}_{1}$? Will see later!

For simplicity $\mu=R$
(1) $C^{(R)}(m, R)=C(m, R)-\frac{R}{m}[C(R, R)-1]$
(2) $\log C^{(R)}(m, R)=\log C(m, R)-\frac{R}{m} \log C(R, R)$

Can do combined $\mu-R$ RGE

B-D mass splitting ratio

$$
\log C^{(R)}(m, R)=\log C(m, R)-\frac{R}{m} \log C(R, R)
$$

$$
\begin{aligned}
& \frac{m_{B^{*}}^{2}-m_{B}^{2}}{m_{D^{*}}^{2}-m_{D}^{2}}=\frac{C^{(R)}\left(m_{b}, R\right)}{C^{(R)}\left(m_{c}, R\right)}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b, c}}\right) \\
& \left.\frac{m_{B^{*}}^{2}-m_{B}^{2}}{m_{D^{*}}^{2}-m_{D}^{2}}\right|_{R} ^{\mathrm{LP}}=0.90_{-0.06}^{+0.05}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b, c}}\right)
\end{aligned}
$$

perturbation theory saved!!!

- convergent perturbation series at LP
- error bars give size of scheme dependence

Conclusions

- S. R-RGE new way to convert between schemes - avoiding large logs and renormalon at the same time
- $\}$. MSR scheme connects smoothly to $\overline{M S}$ mass — great for precision measurement - $\mathcal{S} \cdot \mathrm{R}-\mathrm{RGE}$ is generalizable for higher power law sensitivities to IR
- - . new way to test for renormalons in QCD - using renormalon sum rule
- \mathfrak{G}. We find: α_{s} in $\overline{M S}$ scheme has $\mathrm{U}=1$ renormalon.
- S. method to stabilize prediction for observables in OPE — removing renormalons in Lagrangian parameters and $\overline{M S}$ matrix elements

Back up stuff

strong coupling in MS

Q. Does the strong coupling in $\overline{M S}$ scheme have a renormalon ?
Q. Does the β function in $\overline{\mathrm{MS}}$ scheme have a renormalon ?

Naive non-abelianization and bubble chain calculation does not work as a probe

Use renormalon sum rule to probe it
we see some signature of $u=1$ renormalon !!!

Renormalon in $\overline{M S} \alpha_{s}$

$\beta^{\overline{M S}}$ acts as a probe in the sum rule! how do we probe the probe itself ?

$$
R \frac{d \bar{\alpha}_{s}}{d R}=-\frac{\bar{\alpha}_{s}^{2}}{2 \pi} \sum_{n=0}^{\infty} \beta_{n}\left(\frac{\bar{\alpha}_{s}}{4 \pi}\right)^{n}
$$

$$
R \frac{d\left(\alpha_{s}^{t H}\right)}{d R}=-\frac{\left(\alpha_{s}^{t H}\right)^{2}}{2 \pi}\left(\beta_{0}+\beta_{1} \frac{\alpha_{s}^{t H}}{4 \pi}\right)
$$

α_{s} RGE in tHooft scheme

$$
\frac{\bar{\alpha}_{s}-\alpha_{s}^{t H}}{\alpha_{s}^{t H}}=\sum_{n=1}^{\infty} h_{n}\left(\frac{\alpha_{s}^{t H}}{4 \pi}\right)^{n}
$$

relation between two schemes

$$
\mathrm{Amb}\left[\frac{\bar{\alpha}_{s}-\alpha_{s}^{t H}}{\alpha_{s}^{t H}}\right](\mu) \approx i 0.2 \frac{\Lambda_{\mathrm{QCD}}^{2}}{\mu^{2}}
$$

N3LL prediction need Padé approximation for β_{4}

