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Objective

• Convert between mass schemes without large logs — use a new RGE

• a threshold “MSR mass” that smoothly matches on to MS mass 
without threshold corrections

• a new way to analyze renormalons in OPE

—
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Renormalon Formals
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Borel Summation

f(α) = f(0) +
∞∑

n=0

fnαn+1

B[f ](u) = f(0)δ(u) +
∞∑

n=0

fnun

n!

f(α) =
∫ ∞

0
du e−u/αB[f ](u)

asymptotic series

Borel transform

Borel inverse

Borel
non-summable

 factorial growth implies pole in complex Borel plane
 inverse Borel is ill-defined due to pole on real axis
 gives rise to ambiguity in Borel summed f(α)

x

u

x

u

Borel
summable
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pole mass with bubble chain
iS(p, m) =

i

p/ −m− Σ(p, m)

p/ −m− Σ(p, m)|p2=m2
pole

= 0

full quark propagator

pole mass

Σ(p,m)   = ∑
n

u ∼ 1
2

Amb[mpole] = iΛQCD
8e5/6

3β0

(
β0αs

4π

)n+1

→ un

n!
Borel transform

‘t Hooft (1976)
Bigi et. al. (1994)

Beneke & Braun (1994)

B[mpole − m̄](u) ∼ 4µ

3πβ0

(
e5/6

u− 1/2

)
+ . . .
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IR Scale & Short Distance Masses

converting between schemes 

pole mass relation to other schemes

Introduces an IR 
scale “R”

Introduces log(R1/R0) which directly effects accuracy of conversion

must have αs at the 
same scale to cancel the 

renormalon !!mA(R0)−mB(R1) = R1

[
a′
1

(
αs(R1)

4π

)
+ a′

2

(
αs(R1)

4π

)2

+ . . .

]

− R0

[
a1

(
αs(R1)

4π

)
+ (a2 + β0 log(R1/R0))

(
αs(R1)

4π

)2

+ . . .

]

m(R) = mpole − δm(R,µ = R)

δm(R) = R

[
a1

(
αs(R)

4π

)
+ a2

(
αs(R)

4π

)2

+ . . .

]
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IR Scale & Matrix Elements
OPE

Amb[C1] ∼ ΛQCD

M
Amb[Q2] ∼ Λd+1

[
Q1

]
= d Luke, Manohar, Savage (1994)& ⇒

Define:

O = C1(M,µ)Q1(µ) + C2(M, µ)
Q2(µ)

M
+ . . .

O = C(R)
1 (M, µ)Q1(µ) + C2(M,µ)

Q(R)
2 (µ)
M

+ . . .

R ! ΛQCD

Observable

δQ2(µ, R) = −R
δC1(M,µ, R)

C2(M,µ)
Q1(µ) How to define δC1?

Will see later!

C(R)
1 (M, µ) = C1(M, µ) − R

M
δC1(M,µ, R)
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Scheme Mania
scheme R Rbottom Rtop process Reference

MS m 4.2 163 text book

1S m1S CF αs 1.5 25 ϒ decay, e+ e- ➞QQ(threshold) Hoang, Ligeti, Manohar 
(1999)

PS μf 2 20 e+ e- ➞QQ(threshold) Beneke (1998)

kinetic μf(kin) 1 20 b ➞ c   decays Bigi ,Shifman, Uraltsev 
(1997)

SF μf(SF) 1 – b ➞ Xs γ Bosch, Lange, Neubert, 
Paz (2004)

RGI mRGI 5 170 Lattice QCD Floratos et. al. (1979)

jet Rjet – 2 e+ e- ➞ t t ➞  j j AJ, Scimemi, Stewart 
(2008)

MSR R !! !! Hoang, AJ, Scimemi, 
Stewart (2008)

— –

mpole = m(R) + R
∞∑

n=0

an αn
s (R)Review by ElKhadra, Luke 

(2002)

–

–

Thursday, April 30, 2009



Scheme Mania
scheme R Rbottom Rtop process [?]

MS m 4.2 163 text book

1S m1S CF αs 1.5 25 ϒ decay, e+ e- ➞QQ(threshold) Hoang, Ligeti, Manohar 
(1999)

PS μf 2 20 e+ e- ➞QQ(threshold) Beneke (1998)

kinetic μf(kin) 1 20 b ➞ c   decays Bigi ,Shifman, Uraltsev 
(1997)

SF μf(SF) 1 – b ➞ Xs γ Bosch, Lange, Neubert, 
Paz (2004)

RGI mRGI 5 170 Lattice QCD Floratos et. al. (1979)

jet Rjet – 2 e+ e- ➞ t t ➞  j j AJ, Scimemi, Stewart 
(2008)

MSR R 1 – 4.2 1 – 163 Hoang, AJ, Scimemi, 
Stewart (2008)

— –

mpole = m(R) + R
∞∑

n=0

an αn
s (R)Review by ElKhadra, Luke 

(2002)

–

–
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Schemes Mania contd. :  λ1
λ1 = 〈B|b̄v(iD⊥)2bv|B〉 kinetic energy operator

Czarnecki, Melnikov, Uraltsev 
(1998)λkin

1 (R) = lim
!v→0

lim
mQ→0

3
"v2

∫ R
0 ω2w(ω,"v)dω
∫ R
0 w(ω,"v)dω

kinetic scheme

λi
1 = λ1 − δλi

1

δλi
1 = 〈bv|b̄v(iD⊥)2bv|bv〉

∣∣
R

invisible scheme Ligeti, Stewart, Tackmann (2008)

λSF
1 (µf , µ) =

3
∫∞
−µf

dω ω2S(ω, µ)
∫∞
−µf

dω S(ω, µ)

µ2
π(µf , µf ) = λSF

1 (µf , µf ) = λ1 − δλSF
1 (µf )

shape function scheme
Bosch, Lange, 

Neubert, Paz (2004)

(1)

(2)

(3)
∼ R2(α2

s + . . .)

−
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MSR mass

m→ R

mpole − m(m) = δm̄(µ = m̄)

∼ m

[
ΛQCD

m
+ . . .

]

Amb
[
δm(m)

]
∼ ΛQCD

δm̄(m̄) = m
[
ā1 αs(m) + ā2 α2

s(m) + ā3 α3
s(m) + . . .

]

R
[
ā1 αs(R) + ā2 α2

s(R) + ā3 α3
s(R) + . . .

]
≡ δmMSR(R)

Definition 
of MSR massmpole − δmMSR(R) = mMSR(R)
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MSR and MS mass
—

mpole − mMSR(R) = δmMSR(R)

δmMSR(R) ≡ R
[
ā1 αs(R) + ā2 α2

s(R) + ā3 α3
s(R) + . . .

]

•  

• threshold scheme for R << m

• known to three loops in perturbation theory

• smoothly connects to MS mass if we can smoothly vary R

mMSR(R = m) = m(m)

—

Important

Thursday, April 30, 2009



R-Scale and R-RGE
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μ0

Integrated Out

accessible 
region

μ

Renormalization Group Flow

R0

R

m(R)

absorbed in 
parameters

increase μ :  less UV in mass 

and more in matrix elements

increase R :  less IR in ME 

and more in mass

absorbed in 
parameters

m(μ)–
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R scale in PS mass

removing the potential energy 
contained in the sphere of radius R

−δmPS(R1) =
∫ R0

0 dq q2 V (q)
4π2 +

∫ R1

R0
dq q2 V (q)

4π2

fluctuations in the 
shell 

fluctuations in the 
bulk 

Absorb the IR fluctuations that cause instability in 
perturbative series for observables, into the mass parameter

mPS(R) = mpole − δmPS(R)

δmPS(R) ≡ −1
2

∫
|q|<R

d3q

(2π)3
V (q) R0

R

m(R)

absorbed in 
parameters
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R-RGE: Formulation
R

d

dR
: R

dαs(R)
dR

= β
[
αs(R)

]

γ0 , γ1 , ... are 
linear in an and βn

R→ R′ = λR :
γ0 → γ′

0 = λγ0

γ1 → γ′
1 = λ

[
γ1 − 2β0γ0 lnλ

]

γ0scheme

PS / MSR 4CF

kinetic 16CF/3

jet 2CF eγ

R-anomalous dimension

generates a continuous class of schemes

m(R) = mpole −R

[
a1

(
αs(R)

4π

)
+ a2

(
αs(R)

4π

)2

+ . . .

]

R
dm(R)

dR
= −R

[
γ0

(
αs(R)

4π

)
+ γ1

(
αs(R)

4π

)2

+ . . .

]

&

R-RGE

similar eqn. by
Bigi, Shifman, Uraltsev (1997)
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μ-RGE vs. R-RGE
comparison at leading log

R
d m(R)

dR
= −R γ0

αs(R)
4π

∫
d m(R) = − γ0

∫
dR

αs(R)
4π

need solution of αs - RGE !!!

∫
dm

m
= γ0

∫
dµ

µ

αs(µ)
4π

dµ

µ
=

dαs

β[αs]

µ
d m(µ)

dµ
= m γ0

αs(µ)
4π
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αs-RGE:  All order Solution

∫ R1

R0

dR

R
=

∫ α2

α1

dαs(R)
β[αs(R)]

β[αs(R)] ∼ − β0α
2
s − β1α

3
s − . . .

ΛQCD = R et(−t)b̂1 exp

(
− b̂2

t
− b̂3

2t2
− . . .

)

t = − 2π

β0 αs(R)

order by order inversion gives familiar expression of αs which diverges at ΛQCD 

b̂1 =
β1

2β2
0

,

b̂2 =
β2

1 − β0β2

4β4
0. . .

αs - RGE 

change of variable
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R-RGE : leading log solution
Λ(0)

QCD = R et

a simple pole at t = 0

t1 t0

t

t - plane
t = − 2π

β0 αs(R)

∫
d m(R) = − γ0

∫
dR

αs(R)
4π

=
Λ(0)

QCD γ0

2β0

∫ t0

t1

dt
e−t

t

m(R1)−m(R0) =
Λ(0)

QCD γ0

2β0
[Γ(0, t1)− Γ(0, t0)] ∝ − γR

0 R0

2β0

∞∑

n=0

[β0α1

2π

]n+1 ∞∑

k=n+1

n!
k!

lnk R1

R0
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[
m(R1)−m(R0)

]NkLL = Λ(k)
QCD

k∑

j=0

Sj (−1)j eiπb̂1
[
Γ(−b̂1 − j, t1)− Γ(−b̂1 − j, t0)

]

R-RGE : all order solution

∫ t0

t1

dt
e−t

(−t)n+b̂1

t1 t0

t

nth order pole at t = 0 and branch cut for  t > 0

t - plane

S0 =
γ0

2β0

S1 =
γ1

(2β0)2
− (b̂1 + b̂2)

γ0

2β0
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R-evolution : Message

smooth renormalon free
large log free

evolution

R-RGE

R0

R1

ΛQCD

problematic fluctuations

mA(R0)

mA(R1)

R-RGE

FO
mB(R1)

mA(R0)−mB(R1) = R1

[
a′
1

(
αs(R1)

4π

)
+ a′

2

(
αs(R1)

4π

)2

+ . . .

]

− R0

[
a1

(
αs(R1)

4π

)
+ (a2 + β0 log(R1/R0))

(
αs(R1)

4π

)2

+ . . .

]

O
ld

 S
to

ry
w

ith
 la

rg
e 

lo
gs

N
ew

 M
et

ho
d

Yuck!!

Yu
m!
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R-evolution with MSR mass

R-RGE

ΛQCD

problematic fluctuations

R-RGE

m m(m)

mMSR(R0)R0

directly obtain MS mass–

Important for top precision era !

R0 ~ Γt

     ~ αs mt
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R-RGE is generalizable for 
quantities with higher power IR 

sensitivity
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An Application: 
Renormalon Sum Rules
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Renormalon Sum Rule

lim
R0→0

m(R0) = mpole

lim
R→0

αs(R) = 0⇒

✦ limiting process restores the ambiguity back in mpole

✦ limiting process is always perturbative

Rαs(R)

ΛQCD R0

R - plane

Λ(0)
QCD = R et(−t)b̂1

δm(R) = R

[
a1

(αs

4π

)
+ a2

(αs

4π

)2
+ . . .

]
R→ 0

0
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Renormalon Sum Rule

R ➞ 0 Limit    +      Asymptotic expansion      +        Borel Transform

S0 =
γ0

2β0

S1 =
γ1

(2β0)2
− (b̂1 + b̂2)

γ0

2β0

u

u = 1/2

Renormalon
 Singularity

Residue

R

( ∞∑

k=0

Sk

Γ(1 + b̂1 + k)

)
×

( ∞∑

!=0

g!
Γ[1 + b̂1 − !]

(1− 2u)1+b̂1−!

)
+ ( non singular near u = 1/2)B[mpole − m(R1)](u) =

Thursday, April 30, 2009



Renormalon Sum Rule

R ➞ 0 Limit    +      Asymptotic expansion      +        Borel Transform

A new way to test for renormalons !no approximations !!P1/2 → 0 ⇒ no renormalon

P1/2 → number "= 0⇒ renormalon exists

Renormalon
 Singularity

R

( ∞∑

k=0

Sk

Γ(1 + b̂1 + k)

)
×

( ∞∑

!=0

g!
Γ[1 + b̂1 − !]

(1− 2u)1+b̂1−!

)
+ ( non singular near u = 1/2)B[mpole − m(R1)](u) =

︸ ︷︷ ︸
P1/2
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Normalization of renormalon in 
pole mass

4

FIG. 1: Convergence of the sum-rule for P1/2 for mpole .

m(R0)-m(R) (GeV)

-7.0

-8.0

-9.0

-10.0
1.0 1.80.6 1.4 !

LO

LL

NLO

NLL

NNLO

NNLL

FIG. 2: Top-mass scheme conversion from R0 = 3GeV to R =
163 GeV. Shown are fixed order results (LO,NLO,NNLO) and
RGE results (LL,NLL,NNLL), both in the MSR scheme.

P1/2 =
∞
∑

k=0

Sk

Γ(1+b̂1+k)
, (25)

Q!(u) =
∞
∑

k=0

Sk(2u)k+!
2F1(1, 1+ b̂1+k, 2+ b̂1−!, 1−2u)

(1+b̂1−!)Γ(k + !)
.

Here eG(t) e−t (−t)−b̂1 ≡
∑∞

!=0 g! (−t)−!, so g0 = 1,

g1 = b̂2, g2 = (b̂2
2 − b̂3)/2, etc. The normalization P1/2

multiplies all terms singular at u = 1/2 in Eq. (24).
Since γR(t) is free of the u = 1/2 renormalon, the large
order behavior of γR

k is dominated by the next pole at
u = ρ > 1/2. This implies that asymptotically for large
k, γR

k ∼ k! (β0)k+1ρ−k. Given that the sum for β[αs]
(and hence

∑

! g!) converges, Sk ∼ γ̃k ∼ k! (2ρ)−k, so
the sum over k in P1/2 converges. Since Q!(1/2) =
∑∞

k=0 Sk[(1+ b̂1− !)Γ(k+ !)]−1, all sums over k are ab-
solute convergent for u close to 1/2. From Eq. (24)
the large-n asymptotic behavior for any m(R) − mpole

is an+1 ∼ P1/2 (2β0)n+1
∑∞

!=0 g! Γ(1+b̂1−!+n), and this
series in ! agrees precisely with the behavior expected
from the ΛQCD ambiguity [8]. The new feature obtained
from the RGE in R is the normalization P1/2, expressed

by the convergent sum rule in Eq. (25).

Computing P1/2 provides a means of testing for the
presence of a u = 1/2 renormalon without relying on
the nf -bubble chain. It is easy to check that any Borel
summable series of an’s in Eq. (2) gives a contribution to
P1/2 that rapidly goes to zero. The largest physical series
of an’s that sums to P1/2 = 0 has a u = 1 renormalon,
whereas P1/2 $= 0 for any u = 1/2 pole. Due to the uni-
versality of the u = 1/2 renormalon of mpole, its P1/2 is a
unique scheme independent number. In Fig. 1 we plot the
sum of terms for this P1/2 up to k = 0 (light/blue), k = 1
(medium/green), and k = 2 (dark/red). We show the PS
(solid), static (dashed), and MSR-schemes (long-dashed),
which are each generalized to a class of schemes with
λ ∈ [1/2, 2] using Eq. (10). The convergence is clearly
visible, and we estimate that P1/2 = 0.47 ± 0.10. For
comparison, the single light-fermion bubble chain that is
widely used in IR renormalon computations [8] (large-
nf with naive-nonAbelianization, nf → −3β0/2), gives
P1/2 = 0.80, overestimating by almost a factor of two.

Top-quark mass measurements from jets rely on an un-
derlying Breit-Wigner, and should be considered as val-
ues m(R0) in some scheme with R0 ∼ Γt [11]. The top
MS scheme has R ' 163 GeV ( R0 so a fixed order con-
version to MS involves large logs. If we measure the MSR
mass at R0 and run to R = [m(m)]MS then we directly
get this MS mass. In Fig. 2 we compare conversions be-
tween MSR-schemes with R0 = 3 GeV and R = 163 GeV,
using a fixed order expansion in αs(µ) = αs(κR) (dashed
curves), and the solution of the RGE in Eq. (21) for γR

i
obtained with µ = κR (solid curves). Varying κ gives
a measure for the residual uncertainty at a given order.
The plot shows that Eq.(21) converges rapidly, with flat
κ dependence at NNLL. Also the RGE results display
better convergence than the standard fixed order expres-
sions. Comparisons using the PS and static schemes yield
the same conclusion, with very similar convergence.

The infrared RG analysis performed here can be gener-
alized to study higher order renormalons and quantities
other than quark masses. For an infrared sensitive ma-
trix element of O(ΛN

QCD) the anomalous dimension will

have terms RNαn
s (R), and the corresponding sum-rule

will provide info on the Borel singularity at u = N/2.

This work was supported in part by the Department
of Energy Office of Nuclear Science under the grant DE-
FG02-94ER40818, and the EU network contract MRTN-
CT-2006-035482 (FLAVIAnet). I.S. was also supported
by the DOE OJI program and Sloan Foundation.
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nf NNA P1/2

3 0.68 0.45

4 0.74 0.47

5 0.80 0.48

6 0.88 0.48

7 0.97 0.43

PS, MSR and Static schemes

P1/2 =
∞∑

k=0

Sk

Γ(1 + b̂1 + k)
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Analyzing Renormalons in OPE
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Renormalons in OPE and MS
—

mB = mb + Λ̄− λ1

2mb
− 3λ2

2mb
+ . . .

λ1 ∼ 〈B|b̄vD2
⊥bv|B〉

Λ̄ ∼ 〈B|b̄v iv.D bv|B〉

λ2 ∼ C(mb, µ) 〈B|b̄v gσµνGµν bv|B〉(µ)

m2
B∗ −m2

B =
4
3
C(mb, µ) µ2

G(µ) + . . . Similar relation can be written for  D and D* mesons

m2
B∗ −m2

B

m2
D∗ −m2

D

=
C(mb, µ)
C(mc, µ)

+ . . . C(m,μ) known to three loops 
Grozin et. al. (2007)

Example:  Chromomagnetic operator

mB∗ = mb + Λ̄− λ1

2mb
+

λ2

2mb
+ . . .
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our renormalon sum rule for  C(m,μ)

B-D mass splitting ratio

m2
B∗ −m2

B

m2
D∗ −m2

D

∣∣∣∣
expt.

= 0.88

P1/2

λ0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.5

0.6

0.7

0.8

0.9
LL

NLL

NNLL

perturbation theory seems to fail !!!

Grozin et. al. (2007)

m2
B∗ −m2

B

m2
D∗ −m2

D

∣∣∣∣
MS

= 0.8517− 0.0696− 0.0908− [0.1285] . . .
LP
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Define:

O = C(R)
1 (M, µ)Q1(µ) + C2(M,µ)

Q(R)
2 (µ)
M

+ . . .

R ! ΛQCD

δQ2(µ, R) = −R
δC1(M,µ, R)

C2(M,µ)
Q1(µ) How to define δC1?

Will see later!

C(R)
1 (M, µ) = C1(M, µ) − R

M
δC1(M,µ, R)

OPEO = C1(M,µ)Q1(µ) + C2(M, µ)
Q2(µ)

M
+ . . .Observable

For simplicity μ = R

Generics:

Reminder

log C(R)(m, R) = log C(m, R)− R

m
log C(R,R)

C(R)(m, R) = C(m, R)− R

m
[C(R,R)− 1 ](1)

(2) Can do combined 
μ-R RGE
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B-D mass splitting ratio

0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.90

0.95

1.00

NLO

LO

N3LO

R

log C(R)(m, R) = log C(m, R)− R

m
log C(R,R)

perturbation theory saved!!!

m2
B∗ −m2

B

m2
D∗ −m2

D

=
C(R)(mb, R)
C(R)(mc, R)

+O
(

ΛQCD

mb,c

)

m2
B∗ −m2

B

m2
D∗ −m2

D

∣∣∣∣∣

LP

R

= 0.90+0.05
−0.06 + O

(
ΛQCD

mb,c

)

• convergent perturbation series at LP

• error bars give size of scheme dependence
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Conclusions
  R-RGE new way to convert between schemes — avoiding large logs and renormalon 

at the same time

 MSR scheme connects smoothly to MS mass — great for precision measurement

R-RGE is generalizable for higher power law sensitivities to IR
 

 new way to test  for renormalons in QCD — using renormalon sum rule

  We find: αs in MS scheme has u=1 renormalon.

  method to stabilize prediction for observables in OPE — removing renormalons in 
Lagrangian parameters and MS matrix elements—

—

—
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Back up stuff
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strong coupling in MS
—

Q. Does the strong coupling in MS scheme have a renormalon ?
—

Q. Does the β function in MS scheme have a renormalon ?
—

Use renormalon sum rule to probe it

we see some signature of u = 1 renormalon !!!

Naive non-abelianization and bubble chain calculation does not work as a probe

Suslov (2004)
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Renormalon in MS αs
—

R
dᾱs

dR
= − ᾱ2

s

2π

∞∑

n=0

βn

( ᾱs

4π

)n

αs RGE in MS scheme—

R
d(αtH

s )
dR

= − (αtH
s )2

2π

(
β0 + β1

αtH
s

4π

)
αs RGE in tHooft scheme

ᾱs − αtH
s

αtH
s

=
∞∑

n=1

hn

(
αtH

s

4π

)n

relation between two schemes

Amb
[
ᾱs − αtH

s

αtH
s

]
(µ) ≈ i 0.2

Λ2
QCD

µ2

N3LL prediction need Padé approximation for β4

    acts as a probe in the sum rule ! 
how do we probe the probe itself ?

βMS

N3LL

λ

u = 1 sum rule for αs of MS— 18
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FIG. 18: u=1 sum rule for MS β-function.
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FIG. 19: Plot of P̂ (0)′

2/2 (black-dotted), P̂ (1)′

2/2 (red-dot-

dashed),P̂ (2)′

2/2 (magenta-dashed) as a function of λ-parameter
for Ellis-Jaffe sum rule series.

3-loops in ref. [? ] and considered in a renormalon based
approach in ref. [? ]. Here we want to use this series
expansion just to show the existence and the normaliza-
tion of the u = 1,−1 renormalons. As a first we plot in
fig. ?? the sum rule for the original series given in eq. 19
of ref. [? ]. The convergence of the sum rule seems poor.
Then we apply our technique developped in the previous
section. As a first we flip the sign of the series that de-
fined the Ellis-Jaffe sum rule, then we take the anomalous
dimension corresponding to a series which has a u = 1
renormalon, then we flip again the sign of this anoma-
los dimension. The result is shown in fig. ??. Here we

plot the P̂ (i)′

2/2 /4 for the anomalous dimension and also

P̂ (2)′

2/2 for the original Ellis-Jaffe sum rule. Convergence
of the result is clearly improved. The main limitation
of the error is here only the perturbative orders that are
known.

If we do the opposite: No-flip of the sign of the
orginal series, take the AD, flipping the sign of
the AD we do not get very good convergence...
sigh... should we comment this?

0.8 1.0 1.2 1.4 1.6

0.2

0.4

0.6

FIG. 20: Plot of P̂ (0)′

2/2 /4 (black-dotted), P̂ (1)′

2/2 /4 (red-dot-

dashed),P̂ (2)′

2/2 /4 (blue) as a function of λ-parameter for the
anomalous dimension of Ellis-Jaffe sum rule series. The ma-
genta dashed line is P̂ (2)′

2/2

for the anomalous dimension of Ellis-Jaffe sum rule series.
The improvement of the convergence of the sum rule is
evident comparing the magenta-dashed line with the

blue-continous line.

XI. CONCLUSION

Appendix A: Appendix to Section ??

Quantities relating to MS and MSR mass: Here
we write the ān coefficients defined in formula ?? up to
3 loops.

ā1 = 4CF , (A1)

ā2 = C2
F

(

−
71

8
+ 5π2 − 8π2 log(2) + 12ζ(3)

)

+CACF

(

1111

24
−

4π2

3
+ 4π2 log(2) − 6ζ(3)

)

+CF nfTF

(

−
71

6
−

4π2

3

)

, (A2)

NNLL

NLLP1
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