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IR singularities

On-shell parton scattering amplitudes in gauge
theories contain IR divergences from soft and
collinear loop momenta

IR singularities cancel between real and

virtual contributions Bloch, Nordsieck 1937
Kinoshita 1962; Lee, Nauenberg 1964

Nevertheless Interesting:

resummation of large Sudakov logarithms
remaining after cancellation of divergences

(very relevant for LHC physics!)

check on multi-loop calculations



IR singularities in QED

Singularities arise from soft photon emission

(for m#0); eikonal approximation:

: g = Pu_
D T— N'”u(p)p-k

IR divergent part 1s a multiplicative factor

Higher-order terms obtained by exponentiating

leading -Order SOP[ contr lblltl()n Yennie, Frautschi, Suura 1961
Weinberg 1965



IR singularities in QCD

Ditficulty of the problem already
noted in pioneering work by
Weinberg: phys. Rev. 1408, 516 (1965)
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“... In [Yang-Mills theory] a soft photon emitted from an external line
can itself emit a pair of soft charged massless particles, which

themselves emit soft photons, and so on, building up a cascade of soft
massless particles each of which contributes an infra-red divergence.
The elimination of such complicated interlocking infra-red
divergences would certainly be a Herculean task, and might not

even be possible.”



IR singularities in QCD

Complications arise, since:
soft and collinear singularities appear

gluons carry color charge, hence soft
emissions do not simply exponentiate

But only a restricted set of higher-order

corrections can appear (non-abelian
exponentiation theorem) Gatheral 1985; Frenkel, Taylor 1984

For a long time, explicit form of IR poles was
only understood at two-loop order  catani 1998



Outline of the talk

Conjecture for all-order form of IR singularities in
massless, non-abelian gauge theory amplitudes:

can be absorbed into multiplicative Z ftactor,

governed by anomalous dimension I
I' involves only two-parton correlations

Constraints on I' from non-abelian exponentiation,
soft-collinear factorization, and collinear limits

Diagrammatic analysis to 3 loops, and exclusion of
higher Casimir invariants at 4 loops

Main phenomenological applications: higher-order
resummation for n-jet processes at LHC



Color-space formalism

Represent amplitudes as vectors in color space:
‘Cl, Ot Cn> Catani, Seymour 1996

!

color index of first parton
Color generator for it" parton T |c1,ca, ..., cy)
acts like a matrix:

t* matrix for quarks, f2°¢ for gluons

product T; - T'; = Z TR R (commutative)
° a ° °

charge conservation ) T =0 implies:

I o N

(2,9) 2
5 = -————--___J Cror Ca




Catani's two-loop tormula (1998)

(“... beautitul, yet mysterious ...”)
Specifies IR singularities of dimensionally

regularized n-parton amplitudes at two loops:

1 — (;—; I = ((;—;)2 eE } |/\/ln(e\,{p})> = finite

amplitude 1s vector in color space

with =
(1) = e¢VE l i 1 Igil g
=) I'(1 —¢) zz: (62 S T? 6); 2 55
(Dot e 2E) Po ) z) > ey
1 Bo 2
= —I(l)(e) (I(l)(e) & _) + g2 (€)
2 € == unspecified

Later derivation using factorization properties

and IR evolution equation for form factor
Sterman, Tejeda-Yeomans 2003



All-order generalization

We argue that IR divergences in d=4-2¢ can be

absorbed into a multiplicative factor Z (matrix
in color space), which derives from an
anomalous-dimension matrix: Becher, MN 2009

Ma({p} 1)) = lim Z7 (e, {p}, ) [Ma(e, {p})) |

finite amplitude! |

_ 50 / _ I
Z(c, {p}, 1) = Pexp / %F({Q},u’) |

Corresponding RG evolution equation:

dliu Maliph 1)) = Tlaph ) IMa(ips, w)

=> can be used to resum Sudakov logarithms




All-order generalization

Anomalous dimension 1s conjectured to be
extremely simple:

anom. dimensions,
known to three-loop order }

S N
I‘({Z_?}Mu) — Z 1-;21-} Wcusp(as) In a B | Z ﬁyi(O‘s)

(4.5) /1 '
sum Over pairs J

1#] of partons (pi -+ Dy )2 ’

simple structure, reminiscent of QED

color charges

IR pOlGS determined by COlOI’ charges and

momenta of external partons
color dipole correlations, like at one-loop order

implies amazing cancellations beyond 2 loops



Z ftactor to three loops

d-dimensional p-function

Explicit result: /

Z(Ev {B}mu):/d(j 26—;(04)/04 F({B}7U7a)+/dj/ 9 —F/ﬁ(ig)/@’

0 - 0

where
9,

Tlod = Oln

({p} by O‘S T f}/cusp Ofs Z C

Perturbative expansion:

1l coethic k !
T I = | 2 (043)2 38, = B 46T = T, all coetticients known
n = —— =
47T 4e2 ' 2¢ 47 16¢3 162 Ae /

e (%)3 1185 Ty 56T + 86T — 1265 T'o = I, — 6501 — 6061 = I's
47

o= 72¢€3 36¢€2 6e
=> exponentiation yields Z factor at three loops!

o




Checks

Expression for IR pole terms agrees with all
known perturbative results:

3-loop quark and gluon form factors, which

determine the functions 77 (a;)
Moch, Vermaseren, Vogt 2005

2-100p 3 -j et qqg amphtude Garland, Gehrmann et al. 2002

. . Anastasiou, Glover et al. 2001
2'100]? 4'J et amphtudes BenrPeliries Do 0077005

3-loop 4-jet amplitudes in N=4 super Yang-

Mills theory 1n planar limit Bern et al. 2005, 2007



Catani’s result

Comparison with Catani’s formula at two loops

yields explicit expression for 1/¢€ pole term:

2 1 7 1 cusp -4 7T2
Hf({)S(E) = 1—66 Z (71 = 1/71 p70 =F 1—650 C;
- fabc
= Sy
24€ (i K) : AR O 0

7’7.]7

e P R el

Non-trivial color structure only arises since his

operators are not defined 1in a minimal scheme
see also: Mert Aybat, Dixon, Sterman 2006

Our result confirms an earlier conjecture for
the form of this term Bern, Dixon, Kosower 2004



Key 1deas and arguments supporting
our conjecture



Misconception

Conventional thinking 1s that UV and IR

divergences are of totally different nature:

UV divergences absorbed into
renormalization of parameters of theory;
structure constrained by RG equations

IR divergences arise in unphysical
calculations; cancel between virtual
corrections and real emissions

In fact, IR divergences can be mapped onto UV

divergences of operators 1n etfective field theory!



Re-interpretation of IR divergences

In our case, I i1s the anomalous-dimension
matrix of n-jet operators in SCET, and Z 1s the
associated matrix of renormalization factors

Will now discuss structure of SCET for n-jet
processes and constraints on anomalous

dimension I arising from
charge conservation > . T; = 0
soft-collinear factorization
non-abelian exponentiation

consistency with collinear limits
Becher, MN, arXiv:0903.1126



Soft-collinear factorization
Sen 1983; Kidonakis, Oderda, Sterman 1998

Hard function H depends on

large momentum transfers s;;
between jets

Soft function S depends
M?ZM?
i

on scales AZ; =
J
Sij

Jet functions Ji = J; (M;?)



SCET for n-jet processes

n different types of collinear quark and gluon
hields (— jet functions J;), interacting only via

soft fields (soft function S)

operator definitions for J; and S

Hard contributions (Q ~ Vs) are integrated out
and absorbed into Wilson coefhicients:

I'en
H — g Cn z O ) Bauer, Schwartz 2006

Scale dependence controlled by RGE:

T 1Ca({} ) = Do 2D) Gl {2} 1)

=

anomalous-dimension matrix of n-jet SCET operators




On-shell parton scattering amplitudes

Hard functions C, can be obtained by setting

the jet masses to zero: jet and soft functions
become scaleless, loop corrections vanish

renormalization factor

One ObtalnS: = (minimal subtraction of IR poles)

Co({p}, 1) = lim Z7 (e, {p}, ) IMu(e, {p}))

Becher, MN 2009

where r_ dln Z

dln p

IR poles of scattering amplitudes mapped onto
UV poles of n-jet SCET operators

Multiplicative subtraction, controlled by RG



Constraints from soft-collinear
factorization and collinear limits



Factorization constraint on I

Operator matrix elements must evolve 1n the

same way as hard matching coethcients, such
that physical observables are scale independent

SCET decoupling transformation then implies

, M?M?
(with A7, = ; 2 ):
i7

trivial color structure

e

D(si;) = Tu(A%) + Y T(MP) 1]

—— R —

M; dependence must cancel!

suggests logarithmic dependence on s;; and M;?

I' and I's must have same color structure



Soft function

SCET decoupling transformation removes soft

interactions among collinear fields and absorbs
them 1nto soft Wilson lines

n; ~ pi 1ight—1ike reference vector

= _ =
S.—Pexp ig/ dtn; - Ag(tn;) T} /nl\_
For n-jet operator one gets: \/

-

—

S({n}, 1) = (0]81(0) ... 8,(0)|0) = exp(S({n}, 1))



Non-abelhian exponentiation
Gatheral 1983; Frenkel and Taylor 1984

Purely virtual amplitudes in eikonal (i.e.,
soft-gluon) approximation can be written as
exponentials of simpler quantities, which

receive contributions only from Feynman
diagrams whose color weights are “color-

connected” (or “maximally non-abelian”)

Color-weight graphs associated with each

Feynman diagram can be simplified using the
Lie commutator relation:

=d B ot

TaTb =t TbTa == Z-fabcTc




Non-abelhian exponentiation

Use this to decompose any color-weight graph
into a sum over products of connected webs,
defined as a connected set of gluon lines (not
counting crossed lines as being connected)

e RERRERI

single connected web
o . . »
maximally nonabelian

Only color structures consisting of a single
connected web contribute to the exponent S



Renormalization of Wilson loops

Wilson loops containing singular points (cusps

or cross points) require UV subtractions
Polyakov 1980; Brandt, Neri, Sato 1981

For single cusp formed by tangent vectors nj
and n», renormalization factor depends on

iNE =l
cusp angle p12 defined as 4. o=
ny n;

More generally, sets of related Wilson loops
mix under renormalization, with Z. matrix
depending on all relevant cusp angles

= = =



Laght-like Wilson lines

For large values of cusp angle 312, anomalous
dimension associated with a cusp or cross

point grows linearly with P12, which is then

approximately equal to In(2n;- ny/ \/ i)
Korchemsky, Radyushkin 1987
Cusp angle diverges when one or both

segments approach the light-cone:
2 2

Dot H
F(ﬁlg) =k (Oés) ] B

n
cusp 9
AS
Korchemskaya, Korchemsky 1992
Presence of single logarithm characteristic for

Sudakov problems (double logs)




Laght-like Wilson lines

In SCET, this feature has been found for 2-jet

f k d l . Manohar 2003
Operators ) quar S dInl g uons. Becher, MN 2006

,U2 Ahrens, Becher, MIN, Yang 2008

cusp

Appearance of logarithms of hard scale 1s
perplexing, but can be understood based on

scale correlation 2 ~ un ps, which implies: =
% 2 v
In Iu_Z = Iu_2 — I Iu_2 collinear
luh Mc /LS ¢
For such a rewriting to be possible, the soft

al s

anomalous dimension must depend single-
logarithmically on momenta



Laght-like Wilson lines

Introducing IR regulators p;?#0 to define the
soft and collinear scales, we obtain:

2 {

i

B;; =In —Sij b° hard log =
s = 2 i 2
( p’L )( pj) collinear 7Y
ft 1 2 :
SOIT 10g e —n ,LL_2 e

collinear log



Soft anomalous-dimension matrix

Decompositions:

D({p}, 1) = Do({B,0) + 3 TilLiy 1)

FE(LZ) = _Ff:usp(&s) LZ s /YZ(CVS>

Key equation: o e e e e e LG 0
z
AL )|
O L cusp

——

Enforces linearlty in cusp angles [; (with one

exception, see below) and significantly
restricts color structures



Soft anomalous-dimension matrix

Only exception would be a more complicated
dependence on conformal cross ratios, which
are independent of collinear scales:

=g =)
=55 =)

Gardi, Magnea 2009
Can be excluded using other arguments, such

e

as consistency with collinear limits



Consistency with collinear limits

When two partons become collinear, an n-point
amplitude M, reduces to an (n-1)-parton amplitude

times a Sphttlng function: Berends, Giele 1989; Mangano, Parke 1991
Kosower 1999; Catani, de Florian, Rodrigo 2003

M, ({p1, 02,03, - - -, Pn})) = SP{P1,P2}) Mu—1({ P, D3, - s0n})) + .. 1

FSP({plap2}a :u) — F({plv e 7pn}7 :u) - F({P7 p3 .- ’p”}’ 'LL)‘TP—>T1—|—T2 |
— ______—J

I's, must be independent of momenta and colors of
Becher, MIN 2009

Partons:d; <. -n



Consistency with collinear limits

The form we propose 1s consistent with
factorization in the collinear limit:

FSP({plap2}7 ILL) = F({pla S 7pn}7 M) — F({P7 p3... 7p72}7 M)‘TP*T1+T2

2

B S ) —r ol kpln =S - (Th1+T) nz+ T - (T +T5) In(1 — 2)

—S12 T

- 71 s 72 = fyp ; momentum fraction of parton 1

But this would not work if I' would involve
terms of higher powers in color generators T;

or momentum variables

A strong constraint (new)!



Diagrammatic analysis of the soft

anomalous-dimension matrix



Existing results

Our conjecture implies for the soft anomalous-
dimension matrix:

I‘S({ﬁ}, ,u) = e Z o 21—} ’Ycusp(@s) ﬁij = sz(&s)

(4,7)
This form was obtained at 2-loop order by

showing that diagrams connecting three

parton legs vanish
Mert Aybat, Dixon, Sterman 2006

Also holds for 3-loop

fermionic contributions
Dixon 2009




Order-by-order analysis

One loop (recall > | 7. 1,=--> 17 =->" )

(4,7) ’ t

one leg: T? = C, =
two legs: T, T,
Two loops
one leg; _j fabe o T e — C/;CZ-
two legs: R T = % T, T, (only new structure)

l\/\/\O\/\/\Q
three legsz e T

=> vanishes, since no antisymmetric momentum
structure 1n 1,},k consistent with soft-collinear

explains cancellations observed in:

factorization exists!
Mert Aybat, Dixon, Sterman 2006; Dixon 2009



Three-loop order

= B

(only new structure)

Six new structures consistent with non-abelhian
exponentiation exist, two of which are
compatible with soft-collinear tactorization:

AI‘?)({]_?}?,U) v _fl(zfs) Z fadefbce 1-;@ 1—;b ch Tld Ty (_S’ij)(_skl)

— (=5 )(=551)
—HES PEPR T T \
(4,7:k) more generally, arbitrary odd

function of conformal cross ratio



Three-loop order

Neither of these 1s compatible with collinear

limits: the sphitting function would depend on
colors and momenta of the additional partons

Consider, e.g., the second term:

ATs,({p1, 2}, )] o, = 225 1% [ (R ST (I T T (T Tﬂ)+]
i) T

2
A s e e e T B A T AT T R _“S”+
A L

=

dependence on color invariants and
momenta of additional partons (1#1,2)




Four-loops and beyond

Interesting new webs involving higher Casimir

invariants first arise at four loops

d%de 1’;& Tyb ch CI}d = d%bcd (1‘;& 1’}1) ch CZ'vld) :
deo-an — [ (TS TS .. T, ]
One linear combination of such terms would

be compatible with soft-collinear factorization,
but does not have the correct collinear limit



Casimir scaling

Applied to the two-jet case (form factors), our

formula thus implies Casimir scaling of the
cusp anomalous dimension:

/
Fgusp ( ) Fgusp ( ) |

CF CA — /Ycusp(@s) i
 ee— ————-———-——J

CheCked eXpliCitly at three lOOPS Moch, Vermaseren, Vogt 2004

But contradicts expectations from AdS/CFT
correspondence (high-spin operators in

strong-coupling limit) Armoni 2006
Alday, Maldacena 2007

Presumably not a real conflict ...



Wanted: 3- and 4-loop checks

Full three-loop 4-jet amplitudes in N=4 super

Yang-Mills theory were expressed in terms of
small number of scalar integrals Bern et al, 2008

Once these can be calculated, this will prowvide
stringent test of our arguments (note recent

calculation of three-loop form-factor integrals)
Baikov et al. 2009;
Heinrich, Huber, Kosower, Smirnov 2009

Calculation of four-loop cusp anomalous
dimension would provide non-trivial test of
Casimir scaling, which 1s then no longer

guaranteed by non-abelian exponentiation






Heavy particles

Have extended our analysis to amplitudes
which include massive partons  Becher, MN, arxiv:0904.1021

Effective theory 1s combination of HOET (for
heavy partons) and SCET (massless partons)

Soft function contains both massless and
timelike Wilson lines:

St wup u) = (0[S, - .. Sny Svpry -+ - 80, |0)
vi are 4-velocities of the massive partons

n; are light-light reference vectors



Anomalous dimension

Both the tull and the effective theory know

about the 4-velocities of the massive partons

Therefore much weaker constraints hold for
the massive case:

no soft-collinear factorization
no constraint from collinear limits

For the purely massive case, all structures
allowed by non-abelian exponentiation at a
given order will be present!



Anomalous dimension to two loops

One- and two-parton terms:
F({B}’ {M}’ 'u) ‘Q—parton
2

— Z CFLQTJ A/cusp(aS) In = F Z /yi(as)

— — S
(4,5) ”

T7r - T
- Z 9 chsp(ﬁIJa 048) a5 Z ’YI(CVS)
I

(1,J)

myr
= Z Tr - T Yousp(as) In =

Generalize structure found for massless case

However ...



Anomalous dimension to two loops

... 1n addition also 3-parton correlations appear

in maSSleSS Case! Mitov, Sterman, Sung 2009
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N"LL resummation for n-jet processes

Necessary ingredients:

Hard functions: from fixed-order results for
on-shell amplitudes. New unitarity methods
allow calculation of one-loop amplitudes with
many legs (— NNLL resummation)

Jet functions: from 1imaginary parts of two-
point functions. Inclusive jet functions known
to two loops

Soft functions: matrix elements of Wilson lines.
One-loop calculations comparatively simple

Then resum logarithms of different scales using RG
evolution!



Automatization

in the longer term, this will

hopetully lead to automated
higher-log resummations for

jet rates

— + goes beyond parton showers,

jet rates  which are only accurate at
LL, even after matching

predicts jets, not individual

partons



Conclusions

IR divergences of scattering amplitudes 1n gauge
theories can be absorbed into multiplicative Z
tactor, derived trom SCET anomalous dimension I

Stringent constraints on I' from non-abelian
exponentiation, soft-collinear factorization and
cotlinear limits allow only dipele (2-parton)
correlations in eolor and. momentum-(Shown te

3 loops)
Solves old problem of tinderstaniding 1R

singularities i non-abelian gauge theories

On track to perform higher-log resummations for
generic n-jet processes at LHC using RG evolution



