NNLO CORRECTIONS TO SEMILEPTONIC AND HADRONIC B DECAYS

[GUIDO BELL]

UNIVERSITÄT KARLSRUHE

Precision B physics?

Expect precision measurements from current + future B physics experiments
Some goals: $\quad \delta \operatorname{Br}\left(B \rightarrow X_{s} \gamma\right) \sim 5 \%$

- $\delta V_{u b} \sim 5 \%$
- $\delta \gamma \sim 5^{\circ}$
- $A_{F B}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right): \delta s_{0} \sim 10 \%$

Theory is challenged to match the experimental precision

- construct observables that are almost free of hadronic uncertainties
- need progress from non-perturbative methods
- work out subleading corrections: NNLO and $1 / m_{b}$

B physics at the NNLO frontier

NNLO programme complete for weak effective Hamiltonian

$$
\mathcal{H}_{\mathrm{eff}}=\sum C_{i} Q_{i}
$$

- 2-loop / 3-loop matching corrections
[Bobeth, Misiak, Urban 99; Misiak, Steinhauser 04]
- 3-loop / 4-loop anomalous dimensions
[Gorbahn, Haisch 04; Gorbahn, Haisch, Misiak 05; Czakon, Haisch, Misiak 06]
\rightarrow need hadronic matrix elements to same level of precision

Some decay modes that are currently investigated at NNLO:

$$
\begin{array}{ll}
B \rightarrow X_{s} \gamma & B \rightarrow V \gamma \\
B \rightarrow X_{s} \ell^{+} \ell^{-} & B \rightarrow M M \\
B \rightarrow X_{u} \ell \nu &
\end{array}
$$

B physics at the NNLO frontier

NNLO programme complete for weak effective Hamiltonian

$$
\mathcal{H}_{\mathrm{eff}}=\sum C_{i} Q_{i}
$$

- 2-loop / 3-loop matching corrections
[Bobeth, Misiak, Urban 99; Misiak, Steinhauser 04]
- 3-loop / 4-loop anomalous dimensions
[Gorbahn, Haisch 04; Gorbahn, Haisch, Misiak 05; Czakon, Haisch, Misiak 06]
\rightarrow need hadronic matrix elements to same level of precision

Some decay modes that are currently investigated at NNLO:

$$
\begin{array}{ll}
B \rightarrow X_{s} \gamma & B \rightarrow V \gamma \\
B \rightarrow X_{s} \ell^{+} \ell^{-} & B \rightarrow M M \\
B \rightarrow X_{u} \ell \nu &
\end{array}
$$

In this talk:
Part 1: $B \rightarrow X_{u} \ell \nu, B \rightarrow M \ell \nu$
Part 2: $B \rightarrow M M$

Factorization in semileptonic decays

Inclusive decays: $B \rightarrow X_{u} \ell \nu$

- experiments impose cuts to suppress background from $B \rightarrow X_{C} \ell \nu$
- measurements restricted to shape-function region: $E_{X} \sim m_{b}, m_{X}^{2} \sim m_{b} \wedge_{Q C D}$

Factorization in semileptonic decays

Inclusive decays: $B \rightarrow X_{u} \ell \nu$

- experiments impose cuts to suppress background from $B \rightarrow X_{C} \ell \nu$
- measurements restricted to shape-function region: $E_{X} \sim m_{b}, m_{X}^{2} \sim m_{b} \Lambda_{Q C D}$

Exclusive decays: $B \rightarrow \pi \ell \nu$ at large recoil

- symmetry relations emerge in large energy limit $E_{\pi} \sim m_{b}$
- soft Feynman mechanism vs. hard scattering

$$
\begin{array}{rccc}
F_{i}(E) \sim & C_{i}(E) & \xi(E)+\int d \omega \int d u T_{i}(E, \omega, u) & \phi_{B}(\omega) \\
/ & \phi_{M}(u) \\
m_{b} & \sqrt{m_{b} \wedge_{Q C D}}, \Lambda_{Q C D} & m_{b}, \sqrt{m_{b} \Lambda_{Q C D}} & \Lambda_{Q C D}
\end{array}
$$

Heavy-to-light currents in SCET

$$
\bar{q} \Gamma b=\sum_{i}^{\text {2-body operators }} \int d s \tilde{C}_{i}^{(A)}(s) O_{i}^{(A)}(s)+\sum_{i} \int d s_{1} d s_{2} \tilde{C}_{i}^{(B)}\left(s_{1}, s_{2}\right) O_{i}^{(B)}\left(s_{1}, s_{2}\right)+\ldots
$$

Heavy-to-light currents in SCET

$$
\bar{q} \Gamma b=\sum_{i} \int d s \tilde{C}_{i}^{\text {2-body operators }}(s) O_{i}^{(A)}(s)+\sum_{i} \int d s_{1} d s_{2} \tilde{C}_{i}^{(B)}\left(s_{1}, s_{2}\right) O_{i}^{(B)}\left(s_{1}, s_{2}\right)+\ldots
$$

Inclusive decays:
leading contribution

$$
\left\langle O_{i}^{(A)}\right\rangle \rightarrow J \otimes S
$$

power-correction
$\left\langle O_{i}^{(B)}\right\rangle \rightarrow \sum_{i} j_{i} \otimes s_{i}$

Heavy-to-light currents in SCET

$$
\bar{q} \Gamma b=\sum_{i}^{\text {2-body operators }} \int d s \tilde{C}_{i}^{(A)}(s) O_{i}^{(A)}(s)+\sum_{i} \int d s_{1} d s_{2} \tilde{C}_{i}^{(B)}\left(s_{1}, s_{2}\right) O_{i}^{(B)}\left(s_{1}, s_{2}\right)+\ldots
$$

Inclusive decays:
leading contribution

$$
\left\langle O_{i}^{(A)}\right\rangle \rightarrow J \otimes S
$$

Exclusive decays: leading contribution

$$
\left\langle O_{i}^{(A)}\right\rangle \rightarrow \xi
$$

soft-overlap contribution
power-correction $\left\langle O_{i}^{(B)}\right\rangle \rightarrow \sum_{i} j_{i} \otimes s_{i}$
leading contribution
$\left\langle O_{i}^{(B)}\right\rangle \rightarrow J_{\|} \otimes \phi_{B} \otimes \phi_{M}$
hard spectator scattering

Heavy-to-light currents in SCET

$$
\bar{q} \Gamma b=\sum_{i} \int d s \tilde{C}_{i}^{\text {2-body operators }}(s) O_{i}^{(A)}(s)+\sum_{i} \int d s_{1} d s_{2} \tilde{C}_{i}^{(B)}\left(s_{1}, s_{2}\right) O_{i}^{(B)}\left(s_{1}, s_{2}\right)+\ldots
$$

Hard coefficients $\mathcal{O}\left(\alpha_{s}\right)$: 1-loop
QCD \rightarrow SCET, [Beneke,Feldmann 00;
Bauer, Fleming, Pirjol, Stewart 00]

$$
\mathcal{O}\left(\alpha_{s}^{2}\right): \text { 2-loop }
$$

$\mathcal{O}\left(\alpha_{s}^{2}\right)$: 1-loop
[Beneke, Kiyo, Yang 04; Becher, Hill 04]
\rightarrow 2-loop matching required for NNLO analysis of inclusive and exclusive B decays!

Heavy-to-light currents in SCET

$$
\bar{q} \Gamma b=\sum_{i} \int d s \tilde{C}_{i}^{(A)}(s) O_{i}^{(A)}(s)+\sum_{i} \int d s_{1} d s_{2} \tilde{C}_{i}^{(B)}\left(s_{1}, s_{2}\right) O_{i}^{(B)}\left(s_{1}, s_{2}\right)+\ldots
$$

Status of 2-loop matching calculation

- $\Gamma=\gamma^{\mu} \quad B \rightarrow X_{u} \ell \nu, B \rightarrow \pi \ell \nu$
[Bonciani, Ferroglia 08; Asatrian, Greub, Pecjak 08; Beneke, Huber, Li 08; GB 08]
$>\Gamma=1, \sigma^{\mu \nu} \quad B \rightarrow X_{s} \ell^{+} \ell^{-}, B \rightarrow K^{*} \ell^{+} \ell^{-}$
[GB, Beneke, Huber, Li in preparation]

NDR-scheme relates currents with and without γ_{5}

Outline of matching calculation

Heavy-to-light currents at leading power

$$
\bar{q} \Gamma b \simeq \sum_{i} \int d s \tilde{C}_{i}^{(A)}(s)\left[\xi W_{h c}\right]\left(s n_{+}\right) \Gamma_{i}^{\prime} h_{v}
$$

Strategy: compute $\langle q| \ldots|b\rangle$ in QCD and SCET
matching simplifies in Dimensional Regularization with on-shell quarks
\rightarrow SCET diagrams are scaleless and vanish

Main task: 2-loop QCD calculation

$$
\begin{aligned}
p_{b}^{2} & =m_{b}^{2} \\
p^{2} & =0 \\
q^{2} & =(1-u) m_{b}^{2}
\end{aligned}
$$

Multi-loop techniques

Automatized reduction algorithm

- integration-by-parts identities
- solve large system of equations efficiently
[Laporta 00]
\rightarrow reduce $\mathcal{O}(1.000)$ scalar 2-loop integrals to 14 Master Integrals

Multi-loop techniques

Automatized reduction algorithm

- integration-by-parts identities
- solve large system of equations efficiently
\rightarrow reduce $\mathcal{O}(1.000)$ scalar 2-loop integrals to 14 Master Integrals

Calculation of Master Integrals

- method of differential equations
[Kotikov 91; Remiddi 97]
- harmonic polylogarithms
[Remiddi, Vermaseren 00]
- Mellin-Barnes techniques
[Smirnov 99; Tausk 99]
- method of sector decomposition
[Binoth, Heinrich 04]
\rightarrow analytical results known from 2-loop analysis in $B \rightarrow \pi \pi$
[GB 07] confirmed by several independent calculations

Wilson coefficients in NNLO

$$
\begin{array}{ll}
\Gamma=\gamma^{\mu} & \rightarrow C_{V, 1}, C_{V, 2}, C_{V, 3} \\
\Gamma=1 & \rightarrow C_{S, 1} \\
\Gamma=i \sigma^{\mu \nu} & \rightarrow C_{T, 1}, C_{T, 3} \quad\left(C_{T, 2}=C_{T, 4}=0\right)
\end{array}
$$

momentum transfer $q^{2}=(1-u) m_{b}^{2}$

$$
\begin{aligned}
& u=\frac{n_{+} p}{m_{b}}=\frac{2 E}{m_{b}} \\
& \mu=m_{b}
\end{aligned}
$$

Application I: $B \rightarrow X_{u} \ell \nu$ in the SF region

Partial rate with cut on $P_{+}=E_{X}-\left|\vec{P}_{X}\right|<0.66 \mathrm{GeV}$

- reduced scale dependence at NNLO
- large negative shift between NLO and NNLO
$\rightarrow \mid V_{u b}$ linclusive $^{\text {goes up by }} \sim 10 \%$ compared to NLO
[Greub, Neubert, Pecjak preliminary]

Application II: Heavy-to-light form factors

$$
F_{X}^{B \rightarrow M}(E) \simeq C_{X}^{(A)}(E) \xi_{M}(E)+\int d \omega \int d u T_{X}(E, \omega, u) \phi_{B}(\omega) \phi_{M}(u)
$$

\rightarrow "universal" corrections to heavy-to-light form factors

Symmetry-breaking corrections to form factor ratios

Factorization in hadronic decays

Hadronic matrix elements factorize in heavy quark limit $m_{b} \rightarrow \infty$

$$
\begin{aligned}
\left\langle M_{1} M_{2}\right| Q_{i}|\bar{B}\rangle \simeq & F^{B M_{1}}(0) \int d u T_{i}^{\prime}(u) \phi_{M_{2}}(u) \\
& +\int d \omega d u d v T_{i}^{\prime \prime}(\omega, u, v) \phi_{B}(\omega) \phi_{M_{1}}(v) \phi_{M_{2}}(u)
\end{aligned}
$$

vertex corrections $T^{\prime}=\mathcal{O}(1)$

spectator-scattering $T^{\prime \prime}=\mathcal{O}\left(\alpha_{s}\right)$

- valid to all orders in $\alpha_{s}\left(m_{b}\right)$ and to leading power in $1 / m_{b}$
- may include resummation of $\ln m_{b} / \Lambda_{Q C D}$ via RGEs in SCET

Structure of perturbative expansion

LO: "naive" factorization $\quad\left\langle M_{1} M_{2}\right| Q_{i}|\bar{B}\rangle=F^{B M_{1}}(0) f_{M_{2}}$

NLO: 1-loop vertex corrections tree-level spectator scattering

[Beneke, Buchalla, Neubert, Sachrajda 01]
NNLO: 2-loop vertex corrections 1-loop spectator scattering

Status of NNLO calculation

Topological amplitudes

	2-loop vertex corrections	1-loop spectator scattering
Trees	$[G B \quad 07,09]$	[Beneke, Jäger 05] [Kivel 06] [Pilipp 07]
Penguins	in progress	[Beneke, Jäger 06] [Jain, Rothstein, Stewart 07]

1-loop spectator scattering

Characterization
scales $\mu_{h} \sim m_{b}, \mu_{h c} \sim \sqrt{m_{b} \Lambda_{Q C D}}$
hard-scattering kernels factorize

$$
T_{i}^{\prime \prime}=H_{i}^{\prime \prime}\left(\mu_{h}\right) \otimes J_{\|}\left(\mu_{h c}\right)
$$

jet function $J_{\| \mid}$known to NLO
[Becher, Hill 04, Kirilin 05, Beneke, Yang 05]

Tree amplitudes
$H_{i}^{\prime \prime}$ from QCD \rightarrow SCET, matching
[Beneke, Jäger 05; Kivel 06]
$T_{i}^{\prime \prime}$ confirmed by QCD calculation
[Pilipp 07]
Penguin amplitudes
[Beneke, Jäger 06; Jain, Rothstein, Stewart 07]

2-loop vertex corrections

Characterization
2-loop calculation with 4 legs essentially QCD calculation issue: evanescent operators (complicated for α_{2})

NNLO result for tree amplitudes

Input parameters for default scenario

μ_{h}	$\mu_{h c}$	$F_{+}^{B \pi}(0)$	$\lambda_{B}(1 \mathrm{GeV})$	$a_{2}^{\pi}(1 \mathrm{GeV})$	$10^{3}\left\|V_{u b}\right\|$	γ
$4.8_{-2.4}^{+4.8}$	$1.5_{-0.7}^{+1.5}$	0.26 ± 0.04	0.40 ± 0.15	0.25 ± 0.15	3.95 ± 0.35	70 ± 20

Tree amplitudes

$$
\begin{aligned}
\alpha_{1}(\pi \pi)= & {[1.008]_{v_{0}}+[0.022+0.009 i] v_{1}+[0.024+0.026 i] v_{2} } \\
& -[0.014]_{S_{1}}-[0.016+0.012 i]_{S_{2}}-[0.008]_{1 / m_{b}} \\
= & 1.015_{-0.029}^{+0.020}+\left(0.023_{-0.015}^{+0.015}\right) i \\
\alpha_{2}(\pi \pi)= & {[0.224] v_{0}-[0.174+0.075 i] v_{1}-[0.029+0.046 i] v_{2} } \\
& +[0.084]_{S_{1}}+[0.037+0.022 i]_{S_{2}}+[0.052]_{1 / m_{b}} \\
= & 0.194_{-0.095}^{+0.130}-\left(0.099_{-0.056}^{+0.057}\right) i
\end{aligned}
$$

V_{0} : naive factorization
V_{1} : 1-loop vertex corrections
V_{2} : 2-loop vertex corrections
S_{1} : tree level spectator scattering
S_{2} : 1-loop spectator scattering
$1 / m_{b}$: power corrections (estimate)

$B \rightarrow \pi \pi$ branching ratios

Decay amplitudes with NNLO trees + NLO penguins

$$
\begin{aligned}
\sqrt{2} \mathcal{A}\left(B^{-} \rightarrow \pi^{-} \pi^{0}\right) & \sim v_{u b} V_{u d}^{*}\left[\alpha_{1}+\alpha_{2}\right] G_{F} m_{B}^{2} f_{\pi} F_{+}^{B \pi}(0) \\
\mathcal{A}\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right) & \sim\left\{v_{u b} V_{u d}^{*}\left[\alpha_{1}+\alpha_{4}^{u}\right]+V_{c b} V_{c d}^{*} \alpha_{4}^{c}\right\} G_{F} m_{B}^{2} f_{\pi} F_{+}^{B \pi}(0) \\
-\mathcal{A}\left(\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right) & \sim\left\{v_{u b} V_{u d}^{*}\left[\alpha_{2}-\alpha_{4}^{u}\right]-v_{c b} V_{c d}^{*} \alpha_{4}^{c}\right\} G_{F} m_{B}^{2} f_{\pi} F_{+}^{B \pi}(0)
\end{aligned}
$$

CP-averaged branching ratios with default input parameters
[HFAG 08]

$$
\left.\left.\begin{array}{rl}
10^{6} \mathrm{Br}\left(B^{-} \rightarrow \pi^{-} \pi^{0}\right) & = \\
10^{6} \mathrm{Br}\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right) & =8.23_{-1.05}^{+1.15}(\mathrm{CKM})_{-1.68}^{+2.34}(\mathrm{had})_{-0.18}^{+0.16}(\text { scale })_{-0.42}^{+0.43}(\text { power }) \\
10^{6} \mathrm{Br}\left(\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right) & =0_{-1.87}^{+1.84}(\mathrm{CKM})_{-2.67}^{+3.01}(\mathrm{had})_{-0.20}^{+0.16}(\text { scale })_{-0.70}^{+1.23}(\text { power })
\end{array}\right]\left[\begin{array}{c}
{\left[5.59{ }_{-0.40}^{+0.41}\right]} \\
{ }_{-0.17}^{+0.19}(\mathrm{CKM})_{-0.11}^{+0.37}(\mathrm{had})_{-0.03}^{+0.03}(\text { scale })_{-0.08}^{+0.28}(\text { power })
\end{array}\right][5.16 \pm 0.22]\right][1.55 \pm 0.19]
$$

Consider scenario where some parameters lie at edges of error range ("S4/G")

$$
\begin{aligned}
& \left.\left|V_{u b}\right| F_{+}^{B \pi}(0)\right|_{\text {fit }}=0.81 \times\left.\left|V_{u b}\right| F_{+}^{B \pi}(0)\right|_{\text {default }} \\
& \left.\frac{\hat{f}_{B}}{F_{+}^{B \pi}(0) \lambda_{B}}\right|_{\text {fit }}=2.07 \times\left.\frac{\hat{f}_{B}}{F_{+}^{B \pi}(0) \lambda_{B}}\right|_{\text {default }} \\
& \begin{aligned}
10^{6} \operatorname{Br}\left(B^{-} \rightarrow \pi^{-} \pi^{0}\right) & =5.59 \\
\rightarrow \quad 10^{6} \operatorname{Br}\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right) & =5.16 \\
10^{6} \operatorname{Br}\left(\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right) & =0.71
\end{aligned}
\end{aligned}
$$

Testing factorization with $B^{-} \rightarrow \pi^{-} \pi^{0}$

$B^{-} \rightarrow \pi^{-} \pi^{0}$ is a pure tree decay $\quad \rightarrow \quad$ completely determined at NNLO no weak annihilation, no dependence on γ

Test QCD dynamics with ratio
[Beneke, Neubert 03]

$$
\frac{\Gamma\left(B^{-} \rightarrow \pi^{-} \pi^{0}\right)}{d \Gamma\left(\bar{B}^{0} \rightarrow \pi^{+} \ell^{-} \bar{\nu}\right) /\left.d q^{2}\right|_{q^{2}=0}}=3 \pi^{2}\left|V_{u d}\right|^{2} f_{\pi}^{2}\left|\alpha_{1}+\alpha_{2}\right|^{2}
$$

NNLO in QCDF/SCET: $\quad\left|\alpha_{1}+\alpha_{2}\right|= \begin{cases}1.211_{-0.066}^{+0.098} & \text { (default) } \\ 1.415_{-0.133}^{+0.132} & \text { (fit) }\end{cases}$
[GB, Pilipp preliminary]

HFAG: $\quad 10^{6} \mathrm{Br}\left(B^{-} \rightarrow \pi^{-} \pi^{0}\right)=5.59{ }_{-0.40}^{+0.41}$
Babar: $\left|V_{u b}\right| F_{+}^{B \pi}(0)=(9.6 \pm 0.3 \pm 0.2) \times 10^{-4}$

$$
\rightarrow \quad\left|\alpha_{1}+\alpha_{2}\right|=1.226_{-0.066}^{+0.069} \quad(\exp)
$$

Summary

Many theory analysis on the way beyond NLO:

- NNLO prediction of $\left|V_{u b}\right|_{\text {inclusive }}$ to appear soon
- more complicated for exclusive decays since spectator scattering $\sim \frac{\hat{f}_{B}}{F_{+}^{B \pi}(0) \lambda_{B}}$

Status of $B \rightarrow M M$:

- 1-loop spectator scattering: complete
- 2-loop vertex corrections: trees finished, penguins missing

First NNLO result in QCDF/SCET for $B^{-} \rightarrow \pi^{-} \pi^{0}$

- don't have to tune any parameters to describe clean observable

$$
\frac{\Gamma\left(B^{-} \rightarrow \pi^{-} \pi^{0}\right)}{d \Gamma\left(\bar{B}^{0} \rightarrow \pi^{+} \ell^{-} \bar{\nu}\right) /\left.d q^{2}\right|_{q^{2}=0}} \quad \rightarrow \quad\left|\alpha_{1}+\alpha_{2}\right|=\left\{\begin{aligned}
1.211_{-0.066}^{+0.098} & \text { (default) } \\
1.226_{-0.066}^{+0.069} & \text { (exp) }
\end{aligned}\right.
$$

Backup slides

Charm mass effects

charm quark enters at 2-loop through fermion bubble

\rightarrow not tremendously important, but naively $\frac{m_{c}^{2}}{m_{b}^{2}} \ln \frac{m_{b}^{2}}{m_{c}^{2}} \sim 0.20 \gtrsim \frac{\alpha_{s}\left(m_{b}\right)}{\pi}$

Choose power-counting

- $m_{c} \sim \mu_{h c} \sim\left(\Lambda_{Q C D} m_{b}\right)^{1 / 2}$

IR-scale in hard matching ($m_{c}=0$)
m_{c}-dependence in jet-function

- $m_{c} \rightarrow \infty, m_{b} \rightarrow \infty, m_{c} / m_{b}$ fixed m_{c}-dependence in hard matching jet function with 3 massless quarks

Adopt second scenario
$\rightarrow 4$ new Master Integrals, modified UV- and IR-subtractions, numerical results

Motivation for NNLO

Phenomenological need

- strong phases $\sim \mathcal{O}\left(\alpha_{s}\right) \quad \rightarrow$ direct CP asymmetries known to LO only suffer from large (scale) uncertainties
- $\quad C / T$ seems to be too small
\rightarrow large cancellation in LO+NLO particularly sensitive to NNLO

Conceptual aspects

- spectator scattering with $\alpha_{s}\left(\mu_{h c}\right) \quad \rightarrow \quad$ scale uncertainties even more important PT well-behaved at $\mu_{h c} \sim 1.5 \mathrm{GeV}$?
- factorization proof?
\rightarrow does factorization hold at all ?

Last but not least

- systematic framework
$\rightarrow \quad$ compute systematic corrections !

Scale dependence

