NNLO CORRECTIONS TO SEMILEPTONIC AND HADRONIC *B* DECAYS

[GUIDO BELL]

WORKSHOP ON NEW PHYSICS, FLAVORS AND JETS

RINGBERG

APRIL 2009

Precision *B* physics?

Expect precision measurements from current + future B physics experiments

Theory is challenged to match the experimental precision

- construct observables that are almost free of hadronic uncertainties
- need progress from non-perturbative methods
- work out subleading corrections: NNLO and 1/mb

B physics at the NNLO frontier

NNLO programme complete for weak effective Hamiltonian

$$\mathcal{H}_{\mathsf{eff}} \;=\; \sum \mathit{C_i} \mathit{Q_i}$$

- 2-loop / 3-loop matching corrections
- 3-loop / 4-loop anomalous dimensions
- → need hadronic matrix elements to same level of precision

Some decay modes that are currently investigated at NNLO:

NNLO CORRECTIONS TO SEMILEPTONIC AND HADRONIC B DECAYS WORKSHOP ON NEW PHYSICS, FLAVORS AND JETS - RINGBERG [Bobeth, Misiak, Urban 99; Misiak, Steinhauser 04]

[Gorbahn, Haisch 04; Gorbahn, Haisch, Misiak 05; Czakon, Haisch, Misiak 06]

B physics at the NNLO frontier

NNLO programme complete for weak effective Hamiltonian

$$\mathcal{H}_{\mathsf{eff}} \;=\; \sum \mathit{C_i} \mathit{Q_i}$$

- 2-loop / 3-loop matching corrections
- 3-loop / 4-loop anomalous dimensions
- \rightarrow need hadronic matrix elements to same level of precision

Some decay modes that are currently investigated at NNLO:

$$\begin{array}{cccc} B \to X_{s}\gamma & & \text{In this talk:} \\ B \to X_{s}\ell^{+}\ell^{-} & & & \\ B \to MM & & \\ B \to X_{u}\ell\nu & & & \\ B \to MM & & \\ \end{array}$$
Part 1: $B \to X_{u}\ell\nu, B \to M\ell\nu$
Part 2: $B \to MM$

[Bobeth, Misiak, Urban 99; Misiak, Steinhauser 04]

[Gorbahn, Haisch 04; Gorbahn, Haisch, Misiak 05; Czakon, Haisch, Misiak 06]

Factorization in semileptonic decays

Inclusive decays: $B \rightarrow X_u \ell \nu$

- experiments impose cuts to suppress background from $B \rightarrow X_c \ell \nu$
- measurements restricted to shape-function region: $E_X \sim m_b, \ m_X^2 \sim m_b \Lambda_{QCD}$

[Korchemsky, Sterman 94]

Factorization in semileptonic decays

Inclusive decays: $B \rightarrow X_{u} \ell \nu$

• experiments impose cuts to suppress background from $B \rightarrow X_c \ell \nu$

• measurements restricted to shape-function region: $E_X \sim m_b, \ m_X^2 \sim m_b \Lambda_{QCD}$

[Korchemsky, Sterman 94]

Exclusive decays: $B \rightarrow \pi \ell \nu$ at large recoil

- symmetry relations emerge in large energy limit $E_{\pi} \sim m_b$
- [Charles et al. 98]

soft Feynman mechanism vs. hard scattering

[Beneke, Feldmann 00]

$$F_{i}(E) \sim \frac{C_{i}(E)}{m_{b}} \xi(E) + \int d\omega \int du T_{i}(E, \omega, u) \phi_{B}(\omega) \phi_{M}(u)$$

$$\int \frac{1}{m_{b}} \sqrt{\frac{1}{m_{b} \Lambda_{QCD}}} \frac{1}{M_{b}} \sqrt{\frac{1}{m_{b} \Lambda_{QCD}}} \frac{1}{M_{QCD}}$$

NNLO CORRECTIONS TO SEMILEPTONIC AND HADRONIC B DECAYS WORKSHOP ON NEW PHYSICS, FLAVORS AND JETS - RINGBERG

[Bauer, Fleming, Pirjol, Stewart; Beneke, Feldmann; Chay, Kim; Hill, Neubert; ... 00+]

[Bauer, Fleming, Pirjol, Stewart; Beneke, Feldmann; Chay, Kim; Hill, Neubert; ... 00+]

 $\langle O_i^{(A)} \rangle \rightarrow J \otimes S$

power-correction $\langle O_i^{(B)} \rangle \rightarrow \sum_i j_i \otimes s_i$

NNLO CORRECTIONS TO SEMILEPTONIC AND HADRONIC B DECAYS WORKSHOP ON NEW PHYSICS, FLAVORS AND JETS - RINGBERG

[Bauer, Fleming, Pirjol, Stewart; Beneke, Feldmann; Chay, Kim; Hill, Neubert; ... 00+]

[Bauer, Fleming, Pirjol, Stewart; Beneke, Feldmann; Chay, Kim; Hill, Neubert; ... 00+]

Hard coefficients $QCD \rightarrow SCET_I$

 $\mathcal{O}(\alpha_s)$: 1-loop

[Beneke,Feldmann 00; Bauer, Fleming, Pirjol, Stewart 00]

 $\mathcal{O}(\alpha_s^2)$: 2-loop

 $\mathcal{O}(\alpha_s^2)$: 1-loop [Beneke, Kiyo, Yang 04; Becher, Hill 04]

→ 2-loop matching required for NNLO analysis of inclusive and exclusive B decays!

[Bauer, Fleming, Pirjol, Stewart; Beneke, Feldmann; Chay, Kim; Hill, Neubert; ... 00+]

Status of 2-loop matching calculation

$$\blacktriangleright \quad \Gamma = \gamma^{\mu} \qquad B \to X_{U} \ell \nu, \ B \to \pi \ell \nu$$

[Bonciani, Ferroglia 08; Asatrian, Greub, Pecjak 08; Beneke, Huber, Li 08; GB 08]

$$\blacktriangleright \quad \Gamma = 1, \sigma^{\mu\nu} \quad B \to X_{s}\ell^{+}\ell^{-}, \ B \to K^{*}\ell^{+}\ell^{-}$$

[GB, Beneke, Huber, Li in preparation]

NDR-scheme relates currents with and without γ_5

Outline of matching calculation

Heavy-to-light currents at leading power

$$ar{q}\, \Gamma b \ \simeq \ \sum_i \, \int \, ds \; ilde{C}^{(\mathcal{A})}_i(s) \; [\xi W_{hc}](sn_+) \, \Gamma'_i \, h_V$$

Strategy: compute $\langle q | \dots | b \rangle$ in QCD and SCET

matching simplifies in Dimensional Regularization with on-shell quarks

 $\rightarrow\,$ SCET diagrams are scaleless and vanish

Main task: 2-loop QCD calculation

NNLO CORRECTIONS TO SEMILEPTONIC AND HADRONIC B DECAYS WORKSHOP ON NEW PHYSICS, FLAVORS AND JETS - RINGBERG

Multi-loop techniques

Automatized reduction algorithm

integration-by-parts identities	[Chetyrkin, Tkachov	81]
solve large system of equations efficiently	[Laporta	00]

 $\rightarrow~$ reduce $\mathcal{O}(1.000)$ scalar 2-loop integrals to 14 Master Integrals

Multi-loop techniques

Automatized reduction algorithm

	integration-by-parts identities	[Chetyrkin, Tkachov	81]
	solve large system of equations efficiently	[Laporta	00]
\rightarrow	reduce $\mathcal{O}(1.000)$ scalar 2-loop integrals to 14 Master Inte	grals	
Ca	culation of Master Integrals		
	method of differential equations	[Kotikov 91; Remiddi	97]
	harmonic polylogarithms	[Remiddi, Vermaseren	00]
	Mellin-Barnes techniques	[Smirnov 99; Tausk	99]
	method of sector decomposition	[Binoth, Heinrich	04]
\rightarrow	analytical results known from 2-loop analysis in ${\it B} ightarrow \pi \pi$	[GB	07]
	confirmed by several independent calculations $$\operatorname{Pec}$$	[Bonciani, Ferroglia 08; Asatrian, Gre jak 08; Beneke, Huber, Li 08; Huber	eub, 09]

Wilson coefficients in NNLO

$$\begin{split} & \Gamma = \gamma^{\mu} \quad \rightarrow \ C_{V,1}, \ C_{V,2}, \ C_{V,3} \\ & \Gamma = 1 \qquad \rightarrow \ C_{S,1} \\ & \Gamma = i\sigma^{\mu\nu} \quad \rightarrow \ C_{T,1}, \ C_{T,3} \quad (C_{T,2} = C_{T,4} = 0) \end{split}$$

momentum transfer
$$q^2 = (1 - u)m_b^2$$

 $u = \frac{n_+ \rho}{m_b} = \frac{2E}{m_b}$
 $\mu = m_b$

NNLO CORRECTIONS TO SEMILEPTONIC AND HADRONIC B DECAYS WORKSHOP ON NEW PHYSICS, FLAVORS AND JETS - RINGBERG

Application I: $B \rightarrow X_u \ell \nu$ in the SF region

Partial rate with cut on $P_+ = E_X - |\vec{P}_X| < 0.66 \text{ GeV}$

$$\Gamma_{u}\big|_{\text{cut}} = |V_{ub}|^{2} \left[\Gamma_{u}^{(0)} + \frac{1}{m_{b}} \Gamma_{u}^{(1)} + \frac{1}{m_{b}^{2}} \Gamma_{u}^{(2)} + \ldots \right]$$

- reduced scale dependence at NNLO
- large negative shift between NLO and NNLO
- $\rightarrow |V_{ub}|_{\text{inclusive}}$ goes up by $\sim 10\%$ compared to NLO

[Greub, Neubert, Pecjak preliminary]

Application II: Heavy-to-light form factors

[GB, Beneke, Huber, Li preliminary]

$$F_X^{B o M}(E) \simeq C_X^{(A)}(E) \xi_M(E) + \int d\omega \int du \ T_X(E,\omega,u) \ \phi_B(\omega) \ \phi_M(u)$$

→ "universal" corrections to heavy-to-light form factors

NNLO CORRECTIONS TO SEMILEPTONIC AND HADRONIC B DECAYS WORKSHOP ON NEW PHYSICS, FLAVORS AND JETS - RINGBERG

Symmetry-breaking corrections to form factor ratios

2-loop corrections "largest" for

$$\mathcal{R}_2 = \frac{m_B + m_V}{m_B} \frac{T_1}{V}$$

which enters

 $| V_{td} / V_{ub} | \text{-determination from}$ $\frac{\Gamma(B \to \rho \gamma)}{d\Gamma(B \to \rho \ell \nu) / dq^2 d \cos \theta}$ $\text{ zero of } \frac{dA_{\text{FB}}(B \to V \ell^+ \ell^-)}{dq^2}$

Factorization in hadronic decays

Hadronic matrix elements factorize in heavy quark limit $m_b \rightarrow \infty$

[Beneke, Buchalla, Neubert, Sachrajda 99,01]

$$\begin{array}{ll} \langle M_1 \, M_2 | Q_i | \bar{B} \rangle &\simeq & \mathcal{F}^{BM_1}(0) \, \int du \, T_i^I(u) \, \phi_{M_2}(u) \\ &+ \, \int d\omega \, du \, dv \, T_i^{II}(\omega, \, u, \, v) \, \phi_B(\omega) \, \phi_{M_1}(v) \, \phi_{M_2}(u) \end{array}$$

- valid to all orders in $\alpha_s(m_b)$ and to leading power in $1/m_b$
- may include resummation of ln m_b/Λ_{QCD} via RGEs in SCET

Structure of perturbative expansion

NLO: 1-loop vertex corrections

tree-level spectator scattering

[Beneke, Buchalla, Neubert, Sachrajda 01]

NNLO: 2-loop vertex corrections

1-loop spectator scattering

Status of NNLO calculation

Topological amplitudes

colour-allowed tree α_1

colour-suppressed tree α_2

QCD penguins α_4

2-loop vertex corrections 1-loop spectator scatt		
Trees	[GB 07, 09]	[Beneke, Jäger 05] [Kivel 06] [Pilipp 07]
Penguins	in progress	[Beneke, Jäger 06] [Jain, Rothstein, Stewart 07]

1-loop spectator scattering

Characterization

scales $\mu_h \sim m_b, \ \mu_{hc} \sim \sqrt{m_b \Lambda_{QCD}}$

hard-scattering kernels factorize

 $T_i^{\prime\prime} = H_i^{\prime\prime}(\mu_h) \otimes J_{||}(\mu_{hc})$

jet function J_{||} known to NLO [Becher, Hill 04, Kirilin 05, Beneke, Yang 05]

Tree amplitudes

 $\begin{array}{c} H_{i}^{ll} \text{ from QCD} \rightarrow \text{SCET}_{l} \text{ matching} \\ \text{[Beneke, Jäger 05; Kivel 06]} \end{array}$

 $T_i^{\prime\prime}$ confirmed by QCD calculation

[Pilipp 07]

Penguin amplitudes

[Beneke, Jäger 06; Jain, Rothstein, Stewart 07]

2-loop vertex corrections

- M	_\ A _		_₩		Characterization	
\sim	A		A	X A	2-loop calculation with 4 legs	
R			X	àd a	essentially QCD calculation	
	Ares	\checkmark	2	14	issue: evanescent operators	
		\$^			(complicated for α_2)	
\rightarrow	∛ -¥	- \$	\sim	$\nabla = \overline{A} = \overline{A}$		
$\mathbf{\lambda}$	* *	¥.	- And	XXX	Tree amplitudes	
A /		~ ~	à /	<u> </u>	imaginary part [GB 0	7]
<u> </u>		r Ž	<u> </u>	$\nabla \nabla \nabla$	real part [GB 0	9]
\mathbf{N}		- A	λ	x x x		
À /	\sim	×	A/	$\mathbf{X} \setminus \mathbf{A} \times \mathbf{X}$	Penguin amplitudes	
	\	/			not yet	
	ø		<u></u>	1		

NNLO result for tree amplitudes

Input parameters for default scenario	
---------------------------------------	--

μ_h	μ_{hc}	$F^{B\pi}_+(0)$	λ_B (1 GeV)	a_2^{π} (1 GeV)	10 ³ <i>V_{ub}</i>	γ
$4.8^{+\ 4.8}_{-2.4}$	$1.5^{+1.5}_{-0.7}$	0.26 ± 0.04	0.40 ± 0.15	$\textbf{0.25} \pm \textbf{0.15}$	3.95 ± 0.35	70 ± 20

Tree amplitudes

$$\begin{aligned} \alpha_1(\pi\pi) &= [1.008]_{V_0} + [0.022 + 0.009 \, i]_{V_1} + [0.024 + 0.026 \, i]_{V_2} \\ &- [0.014]_{S_1} - [0.016 + 0.012 \, i]_{S_2} - [0.008]_{1/m_b} \\ &= 1.015^{+0.020}_{-0.029} + (0.023^{+0.015}_{-0.015}) \, i \\ \alpha_2(\pi\pi) &= [0.224]_{V_0} - [0.174 + 0.075 \, i]_{V_1} - [0.029 + 0.046 \, i]_{V_2} \\ &+ [0.084]_{S_1} + [0.037 + 0.022 \, i]_{S_2} + [0.052]_{1/m_b} \\ &= 0.194^{+0.130}_{-0.035} - (0.099^{+0.057}_{-0.056}) \, i \end{aligned}$$

$B \rightarrow \pi \pi$ branching ratios

Decay amplitudes with NNLO trees + NLO penguins

$$\begin{split} &\sqrt{2}\,\mathcal{A}(B^- \to \pi^-\pi^0) \quad \sim \quad V_{ub}V^*_{ud} \Big[\mathbf{\alpha}_1 + \mathbf{\alpha}_2 \Big] G_F m_B^2 f_\pi F_+^{B\pi}(\mathbf{0}) \\ &\mathcal{A}(\bar{B}^0 \to \pi^+\pi^-) \quad \sim \quad \Big\{ V_{ub}V^*_{ud} \Big[\mathbf{\alpha}_1 + \mathbf{\alpha}_4^u \Big] + V_{cb}V^*_{cd} \mathbf{\alpha}_4^c \Big\} \; G_F m_B^2 f_\pi F_+^{B\pi}(\mathbf{0}) \\ &- \mathcal{A}(\bar{B}^0 \to \pi^0\pi^0) \quad \sim \quad \Big\{ V_{ub}V^*_{ud} \Big[\mathbf{\alpha}_2 - \mathbf{\alpha}_4^u \Big] - V_{cb}V^*_{cd} \mathbf{\alpha}_4^c \Big\} \; G_F m_B^2 f_\pi F_+^{B\pi}(\mathbf{0}) \end{split}$$

CP-averaged branching ratios with default input parameters

$$10^{6} \text{ Br}(B^{-} \to \pi^{-}\pi^{0}) = 6.23^{+1.15}_{-1.05} (\text{CKM})^{+2.34}_{-0.16} (\text{scale})^{+0.43}_{-0.42} (\text{power}) \qquad [5.59 \stackrel{+0.41}{-0.40}]$$

$$10^{6} \text{ Br}(\bar{B}^{0} \to \pi^{+}\pi^{-}) = 8.90^{+1.84}_{-1.87} (\text{CKM})^{+3.01}_{-2.67} (\text{had})^{+0.16}_{-0.20} (\text{scale})^{+1.23}_{-0.70} (\text{power})$$

$$[5.16 \pm 0.22]$$

$$10^{6} \text{ Br}(\bar{B}^{0} \rightarrow \pi^{0}\pi^{0}) = 0.40^{+0.19}_{-0.17} (\text{CKM})^{+0.37}_{-0.11} (\text{had})^{+0.03}_{-0.03} (\text{scale})^{+0.28}_{-0.08} (\text{power}) \qquad [1.55 \pm 0.19]$$

Consider scenario where some parameters lie at edges of error range ("S4/G")

$$\begin{split} V_{ub} |F_{+}^{B\pi}(0)|_{\text{fit}} &= 0.81 \times |V_{ub}|F_{+}^{B\pi}(0)|_{\text{default}} & 10^{6} \text{ Br}(\bar{B}^{-} \to \pi^{-}\pi^{0}) &= 5.59 \\ \frac{\hat{f}_{B}}{F_{+}^{B\pi}(0)\lambda_{B}}|_{\text{fit}} &= 2.07 \times \frac{\hat{f}_{B}}{F_{+}^{B\pi}(0)\lambda_{B}}|_{\text{default}} & \to & 10^{6} \text{ Br}(\bar{B}^{0} \to \pi^{+}\pi^{-}) &= 5.16 \\ 10^{6} \text{ Br}(\bar{B}^{0} \to \pi^{0}\pi^{0}) &= 0.71 \end{split}$$

[HEAG 08]

Testing factorization with $B^- \rightarrow \pi^- \pi^0$

$$B^- \rightarrow \pi^- \pi^0$$
 is a pure tree decay \rightarrow completely determined at NNLO
no weak application, no dependence on γ

Test QCD dynamics with ratio

1

[Beneke, Neubert 03]

$$\frac{\Gamma(B^- \to \pi^- \pi^0)}{d\Gamma(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu})/dq^2|_{q^2=0}} = 3\pi^2 |V_{ud}|^2 f_{\pi}^2 |\alpha_1 + \alpha_2|^2$$

NNLO in QCDF/SCET:
$$|\alpha_1 + \alpha_2| = \begin{cases} 1.211^{+0.098}_{-0.066} & (default) \\ 1.415^{+0.132}_{-0.133} & (fit) \end{cases}$$
 [GB, Pilipp preliminary]

HFAG:
$$10^6 \operatorname{Br}(B^- \to \pi^- \pi^0) = 5.59 \stackrel{+0.41}{_{-0.40}}$$

Babar: $|V_{ub}|F^{B\pi}_+(0) = (9.6 \pm 0.3 \pm 0.2) \times 10^{-4}$

 $\rightarrow |\alpha_1 + \alpha_2| = 1.226^{+0.069}_{-0.066}$ (exp)

Summary

Many theory analysis on the way beyond NLO:

- NNLO prediction of $|V_{ub}|_{inclusive}$ to appear soon
- \blacktriangleright more complicated for exclusive decays since spectator scattering \sim

Status of $B \rightarrow MM$:

- 1-loop spectator scattering: complete
- > 2-loop vertex corrections: trees finished, penguins missing

First NNLO result in QCDF/SCET for $B^- \to \pi^- \pi^0$

don't have to tune any parameters to describe clean observable

$$\frac{\Gamma(B^- \to \pi^- \pi^0)}{d\Gamma(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu})/dq^2|_{q^2=0}} \longrightarrow |\alpha_1 + \alpha_2| = \begin{cases} 1.211^{+0.098}_{-0.066} & (\text{default}) \\ 1.226^{+0.069}_{-0.066} & (\text{exp}) \end{cases}$$

Backup slides

Charm mass effects

charm quark enters at 2-loop through fermion bubble

 \rightarrow not tremendously important, but naively

rely
$$rac{m_c^2}{m_b^2} \ln rac{m_b^2}{m_c^2} \sim 0.20 \gtrsim rac{lpha_s(m_b)}{\pi}$$

Choose power-counting

- $m_c \sim \mu_{hc} \sim (\Lambda_{QCD} m_b)^{1/2}$ IR-scale in hard matching ($m_c = 0$) m_c -dependence in jet-function
- ▶ $m_c \rightarrow \infty, m_b \rightarrow \infty, m_c/m_b$ fixed m_c -dependence in hard matching jet function with 3 massless quarks

Adopt second scenario

 \rightarrow 4 new Master Integrals, modified UV- and IR-subtractions, numerical results

Motivation for NNLO

Phenomenological need

- strong phases $\sim O(\alpha_s)$
- C/T seems to be too small
- → direct CP asymmetries known to LO only suffer from large (scale) uncertainties
- → large cancellation in LO+NLO particularly sensitive to NNLO

Conceptual aspects

- ▶ spectator scattering with $\alpha_s(\mu_{hc}) \rightarrow$
- factorization proof ?
- ightarrow scale uncertainties even more important PT well-behaved at $\mu_{hc} \sim$ 1.5 GeV ?
 - \rightarrow $\;$ does factorization hold at all ?

Last but not least

systematic framework \rightarrow compute systematic corrections !

Scale dependence

NNLO CORRECTIONS TO SEMILEPTONIC AND HADRONIC B DECAYS WORKSHOP ON NEW PHYSICS, FLAVORS AND JETS - RINGBERG