Probing Randall-Sundrum Model through FCNC

Stefania Gori

MPI Munich & TU Munich

Ringberg Workshop on New Physics, Flavors and Jets

Ringberg, April 28th 2009

Outline

1. Motivations for WED:

- Natural Generation of Hierarchies in Masses and Mixings: Flavor Problem
- Addressing Gauge-Hierarchy Problem
- ♦ ...

2. Randall-Sundrum Scenario:

- The Model analyzed
- New Features in the Flavor Sector (FCNC at Tree Level and non Unitarity of CKM)
- Neutral Meson Mixing: Theory and Numerics
- Rare Decays of B and K Mesons: Theory and Numerics

3. Conclusions

- M. Blanke, A.J.Buras, B.Duling, S.Gori, A.Weiler [JHEP03(2009)001]
- M. Blanke, A. J. Buras, B. Duling, K. Gemmler, S. Gori [JHEP 0903:108,2009]

- M. Albrecht, M. Blanke, A. J. Buras, B. Duling, K. Gemmler arXiv:0903.2415 [hep-ph]
- A. J. Buras, B. Duling, S. Gori arXiv of this week!

Flavor Problem & its Solution (1)

Experiments tell us:

I. quarks and charged leptons have $m_e \approx 0.5 \ MeV$, $m_\tau \approx 1800 \ MeV$,... $m_\mu \approx 2.5 \ MeV$, $m_t \approx 170 \ GeV$,...

... and the theory:

III. at the same time CKM picture describes data surprisingly well

hierarchies

II. also CKM mixing between quark

 $|V_{ud}| \approx 1$, $|V_{us}| \approx 0.226$

 $|V_{cb}|\approx 0.041$, $|V_{ub}|\approx 0.0038$

SM Yukawa couplings have to exhibit an extremely hierarchical structure, **why?**

Flavor Problem & its Solution (1)

Experiments tell us:

I. quarks and charged leptons have $m_e \approx 0.5 \ MeV$, $m_\tau \approx 1800 \ MeV$,... $m_u \approx 2.5 \ MeV$, $m_t \approx 170 \ GeV$,...

... and the theory:

III. at the same time CKM picture describes data surprisingly well

hierarchies

II. also CKM mixing between quark $|V_{ud}| \approx 1$, $|V_{us}| \approx 0.226$

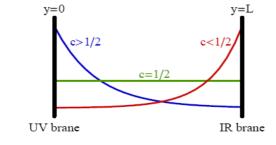
 $|V_{cb}|\approx 0.041$, $|V_{ub}|\approx 0.0038$

SM Yukawa couplings have to exhibit an extremely hierarchical structure, why?

How to solve it in the WED Contexts?

<u>Preliminaries</u>

• Gauge fields and matter fields can propagate into the 5th dimension

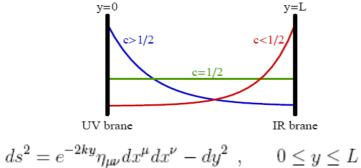

• For each particle species, there is an infinite number of solutions:

Kaluza-Klein tower of particles

• Zero mode solutions (if existent) are identified with the SM particles

Flavor Problem & its Solution (2)

Zero Modes of Fermions:



 $ds^2 = e^{-2ky}\eta_{\mu\nu}dx^\mu dx^\nu - dy^2 \ , \qquad 0 \leq y \leq L$

$$f^{(0)}(y,c) = \sqrt{\frac{(1-2c) kL}{e^{(1-2c)kL} - 1}} e^{\left(\frac{1}{2} - c\right)ky}$$

Strong dependence on bulk masses

Flavor Problem & its Solution (2)

Zero Modes of Fermions:

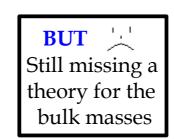
$$f^{(0)}(y,c) = \sqrt{\frac{(1-2c)kL}{e^{(1-2c)kL}-1}} e^{\left(\frac{1}{2}-c\right)ky}$$

Strong dependence on bulk masses

The Solution of the Flavor Problem:

I. 4D Yukawas in terms of shape functions:

$$Y_{ij} \propto \int_0^L \frac{dy}{L^{3/2}} \lambda_{ij} h(y) f_L^{(0)}(y, c^i) f_R^{(0)}(y, c^j)$$


5D Yukawas

 λ_{ii} assumed to be **anarchical** and O(1)

Higgs localized on the IR brane: $h(y) = \sqrt{2(\beta - 1)kL} e^{kL}e^{\beta k(y-L)}$, $\beta > 1$

II. Result: slightly different c parameters of O(1) lead to a large hierarchy in Y_{μ}

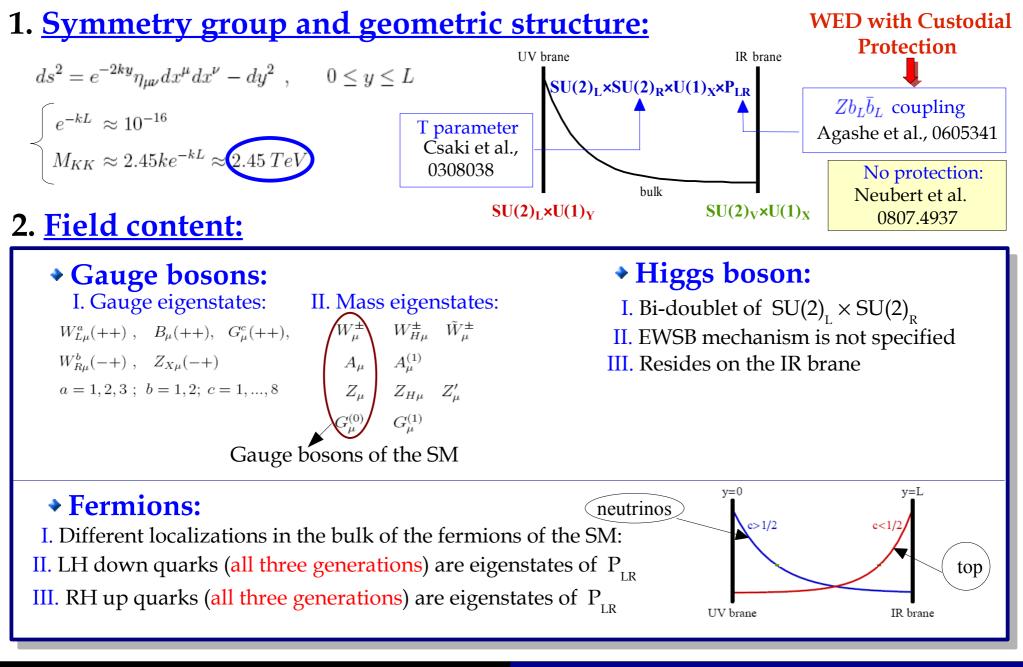
Hierarchy of quark masses and mixings explained by a purely geometrical approach!


Numerical example: $c_1 = 0.66$, $c_2 = 0.59$, $c_3 = 0.41$

 $Y_1 = 0.0017$, $Y_2 = 0.017$, $Y_3 = 0.42$

S. Gori

Model


Definition of the Model

Model

Definition of the Model

5\20

S. Gori

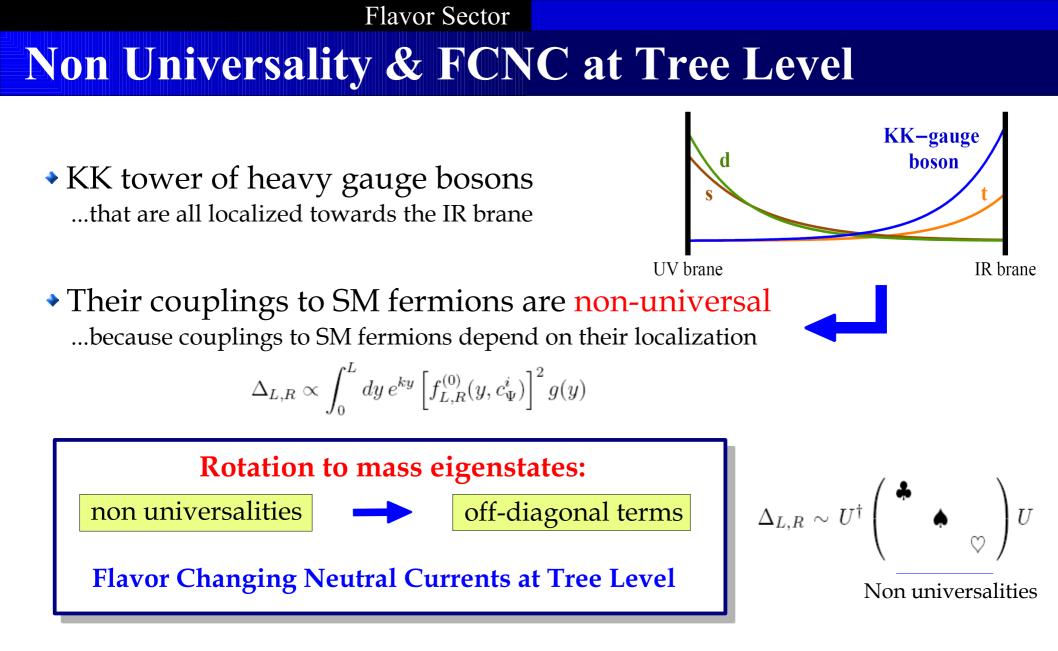
Model

Protection Mechanism

Generalization of Agashe et al., 0605341

Theorem: In theories with $SU(2)_L \times SU(2)_R \times P_{LR}$ gauge symmetry if a fermion F has $T_L = T_R$, $T_L^3 = T_R^3$ or $T_L^3 = T_R^3 = 0$ then its coupling $ZF\bar{F}$ is **SM like**

In RS model: relation not spoiled by the mixing with KK-fermions

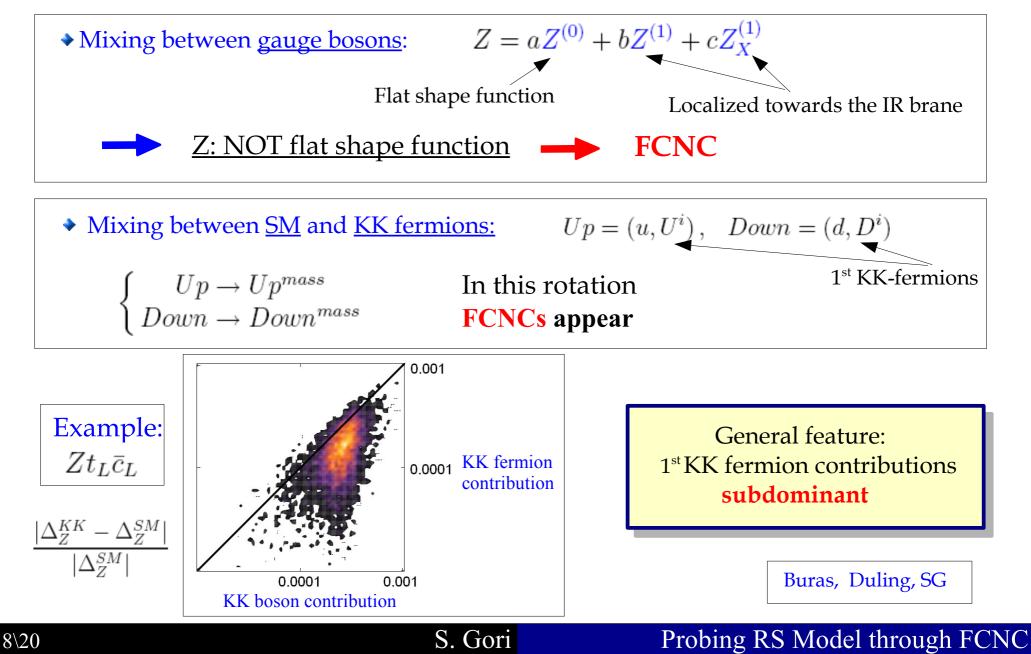

Buras, Duling, SG

<u>Consequence for SM fermions</u>: $Zd_L^i \bar{d}_L^j$ and $Zu_R^i \bar{u}_R^j$ are mainly SM like

Blanke, Buras, Duling, Gemmler, SG JHEP 0903:108,2009

Small contributions to flavor violation due to the breaking of P_{LR} symmetry

S. Gori



New sources of flavor and CP violation beyond CKM: model is non-MFV

Flavor Sector

FCNC for the Z boson of the SM

Two sources of FCNC at tree level: due to EWSB we have

Flavour Sector

Unitarity of CKM matrix

$$V_{CKM} = \frac{\sqrt{2}}{g^{4D}} \tilde{U}_L G_L(W^+) \tilde{D}_L$$

$$U_L = \left(\begin{array}{c|c} \tilde{U}_L \\ \hline \end{array} \right)$$
$$D_L = \left(\begin{array}{c|c} \tilde{D}_L \\ \hline \end{array} \right)$$

Rotation matrices for Up and Down quarks

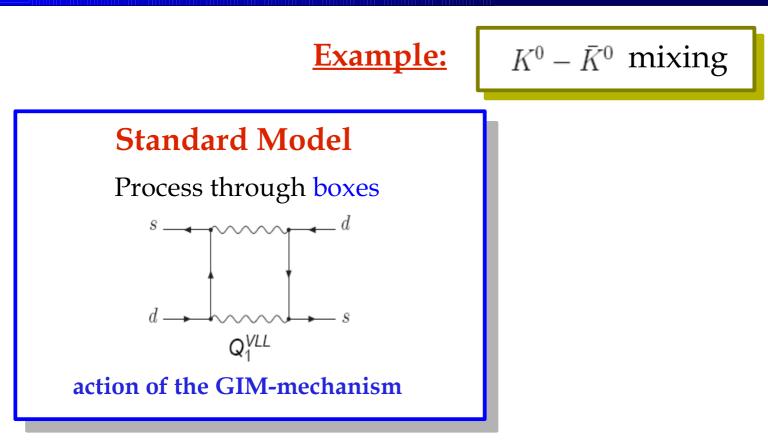
<u>Two sources of non unitarity:</u> due to EWSB we have

Mixing between gauge bosons non universality in $G_L(W^+)$

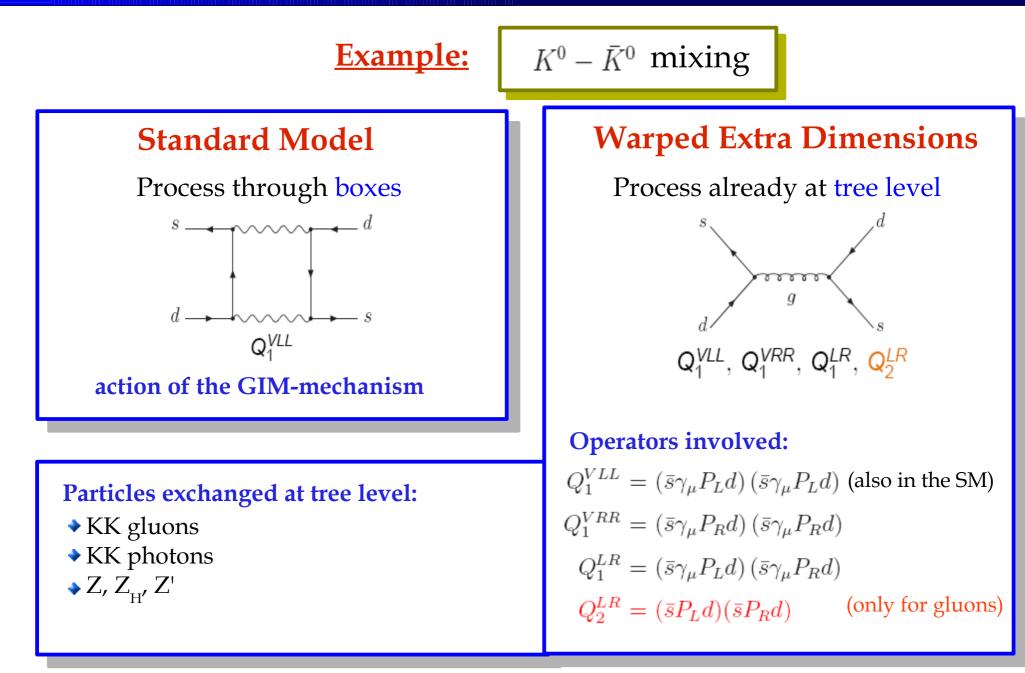
Mixing between SM and 1stKK fermions:

$$V_{CKM}^{18\times12} = \frac{\sqrt{2}}{g^{4D}} U_L \mathcal{G}_L(W^+) D_L \text{ is unitary}$$

Numerically: gauge boson contribution predominant


ſ	V_{CKM}	$\cdot V_{CKM}^{\dagger}$	= 1	$+ \mathcal{O}(\frac{v^2}{M_{KK}^2})$
Ì	V_{CKM}^{\dagger}	$\cdot V_{CKM}$	= 1	$+ \mathcal{O}(\frac{v^2}{M_{KK}^2})$

Largest contributions when quarks of the third family involved: 2% effects


Probing RS Model through FCNC

Comparison with experimental bounds:	
$ V_{ud} ^2 + V_{us} ^2 + V_{ub} ^2 > 0.9982 \qquad (PDG, 2007)$	 We are inside this limit for 95% of the points analyzed

Meson Mixing: some Theoretical Aspects

Meson Mixing: some Theoretical Aspects

Operator Structure in Meson Mixing

In the K system:

- Large chiral enhancement of $Q_2^{LR} \propto \left(\frac{m_K}{m_c + m_d}\right)^2$
- Strong RG running of Q^{LR}

Q_{2}^{LR} dominates \longrightarrow contribution of the gluons is predominant

In the B system:

• Less pronounced chiral enhancement of $Q_2^{LR} \propto$ • A bit weaker RG running of Q_{2}^{LR}

$$\left(\frac{m_B}{m_b + m_{d,s}}\right)^2$$

Both Q_1^{VLL} and Q_2^{LR} are important \longrightarrow EW gauge bosons are competitive

(missed in the literature)

Probing RS Model through FCNC

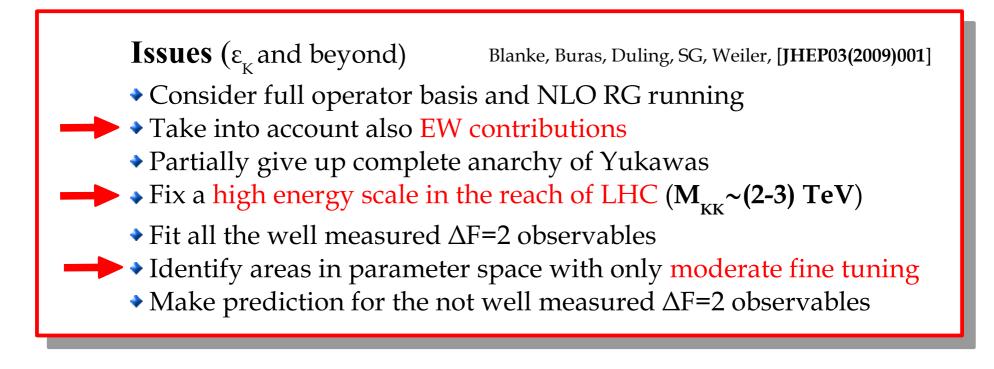
In both systems:

• Z boson not relevant: I. left-handed couplings protected by P_{LR} II. right-handed couplings enter only at higher order

S. Gori

 $11 \ge 20$

Our Approach to the Analysis of Meson Mixing

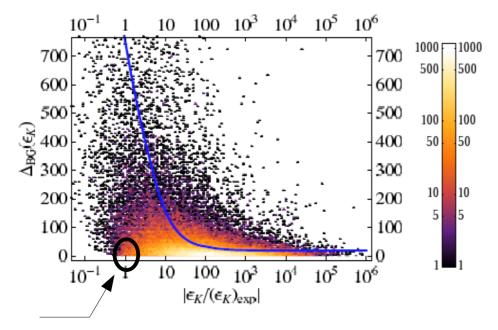

Previous analysis:Csaki, Falkowski, Weiler, [JHEP 0809:008,2008]tension between anarchic Yukawas, $\varepsilon_{K'}$ and a low high energy scale M_{KK}

totally anarchic Yukawas and constraint from $\varepsilon_{_{\rm K}} \longrightarrow M_{KK} \ge 21 \,{\rm TeV}$

Our Approach to the Analysis of Meson Mixing

Previous analysis: Csaki, Falkowski, Weiler, [JHEP 0809:008,2008] tension between anarchic Yukawas, $ε_{\kappa}$, and a low high energy scale M_{κκ}

totally anarchic Yukawas and constraint from $\epsilon_{_{\rm K}} \longrightarrow M_{KK} \ge 21 \,{\rm TeV}$



ε: the most Challenging Observable

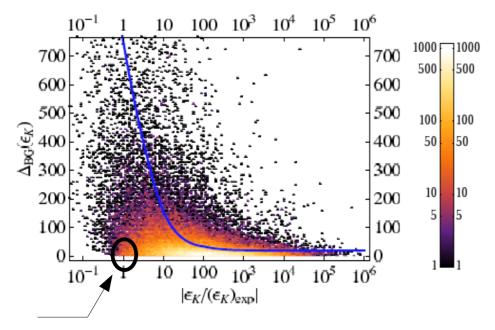
Our definition of fine tuning:

$$\left(\frac{1}{t}\right)_{BG} = max_i \frac{d\log(Obs.)}{d\log(x_i)} = max_i \frac{x_i}{Obs.} \frac{dObs.}{dx_i}$$

Barbieri, Giudice Nucl.Phys.B306:63

fitting SM quark masses and CKM elements within 2σ

- Generically $\varepsilon_{\rm K} \sim 10^2 \varepsilon_{\rm K}^{\rm exp}$
- Average of the fine tuning decreases with increasing ε_K


• Parameter sets with moderate fine tuning and $\mathcal{E}_{K} \sim \mathcal{E}_{K}^{exp}$ exist

E_k: the most Challenging Observable

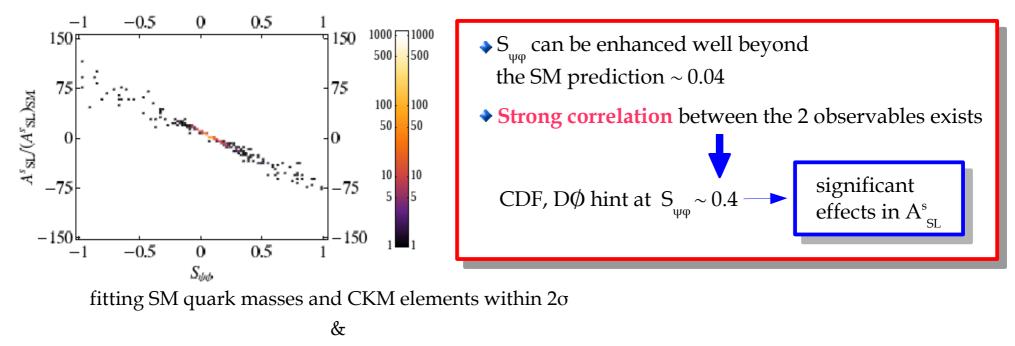
Our definition of fine tuning:

$$\left(\frac{1}{t}\right)_{BG} = max_i \frac{d\log(Obs.)}{d\log(x_i)} = max_i \frac{x_i}{Obs.} \frac{dObs.}{dx_i}$$

Barbieri, Giudice Nucl.Phys.B306:63

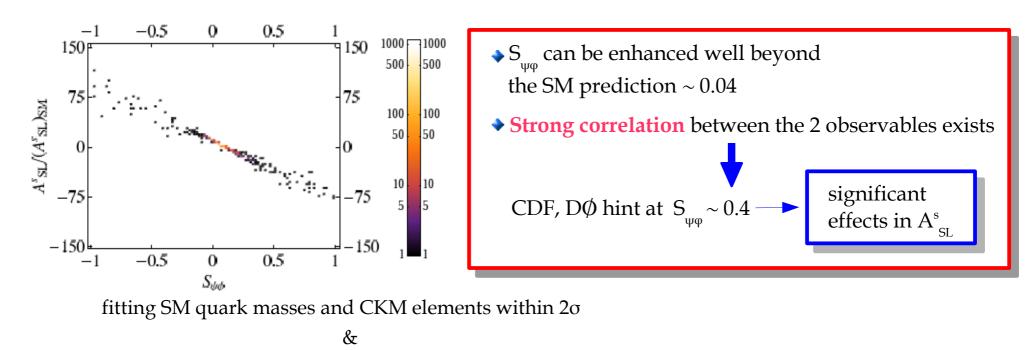
fitting SM quark masses and CKM elements within 2σ

• Generically
$$\varepsilon_{\rm K} \sim 10^2 \varepsilon_{\rm K}^{\rm exp}$$

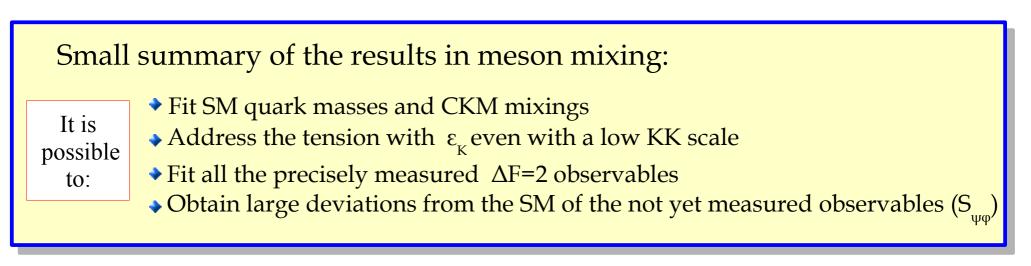

 Average of the fine tuning decreases with increasing E_K

• Parameter sets with moderate fine tuning and $\mathcal{E}_{K} \sim \mathcal{E}_{K}^{exp}$ exist

No problem in fitting all the other well measured $\Delta F=2$ observables ($\Delta M_{K'} \Delta M_{d'} \Delta M_{s'} S_{\psi Ks}$) with small fine tuning

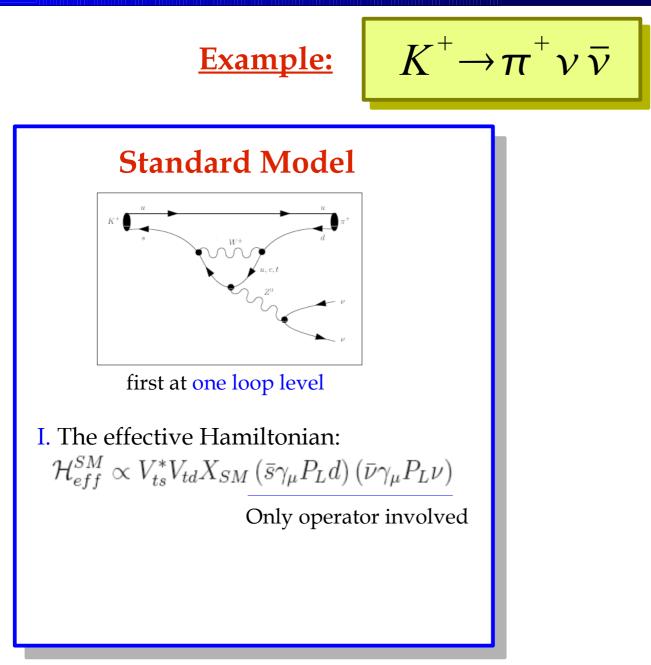

13\20

Predictions for Observables not Measured yet

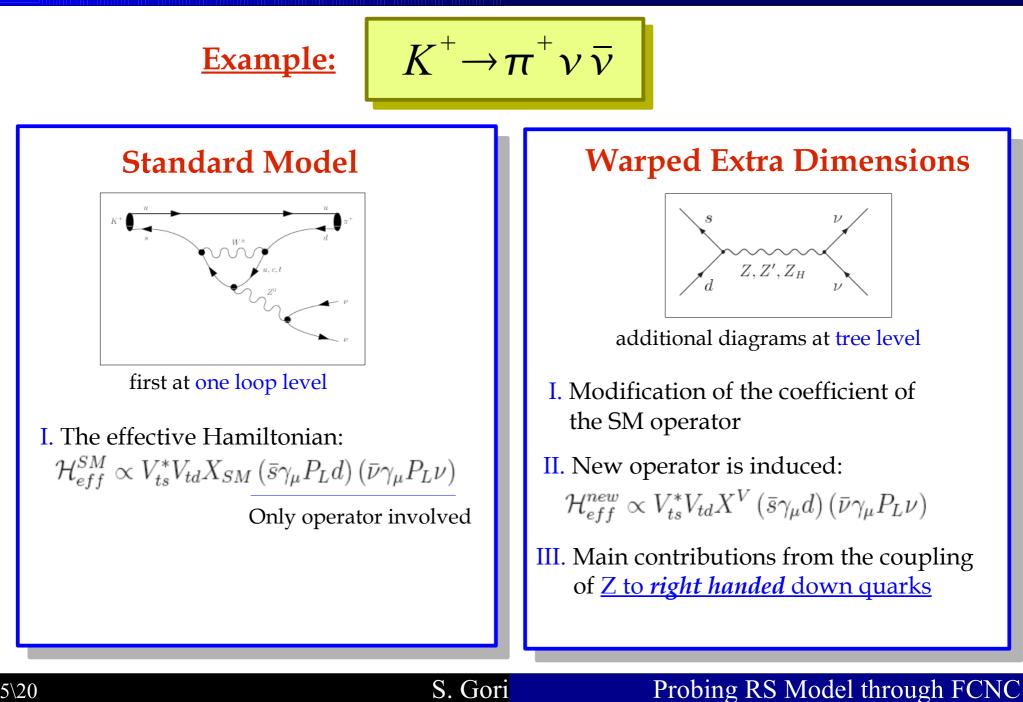


fitting all the well measured $\Delta F=2$ observables, with small fine tuning (≤ 20)

Predictions for Observables not Measured yet


fitting all the well measured $\Delta F=2$ observables, with small fine tuning (≤ 20)

S. Gori


Rare Decays: Theory

Rare Decays: some Theoretical Aspects

Rare Decays: Theory

Rare Decays: some Theoretical Aspects

Rare Decays: Theory

Rare Decays: K physics vs B physics

$$s \rightarrow d \,\overline{\nu} \,\nu \quad \nu s \quad (b \rightarrow d \,\overline{\nu} \,\nu \,\lor \, b \rightarrow s \,\overline{\nu} \,\nu)$$

Effective Hamiltonian:

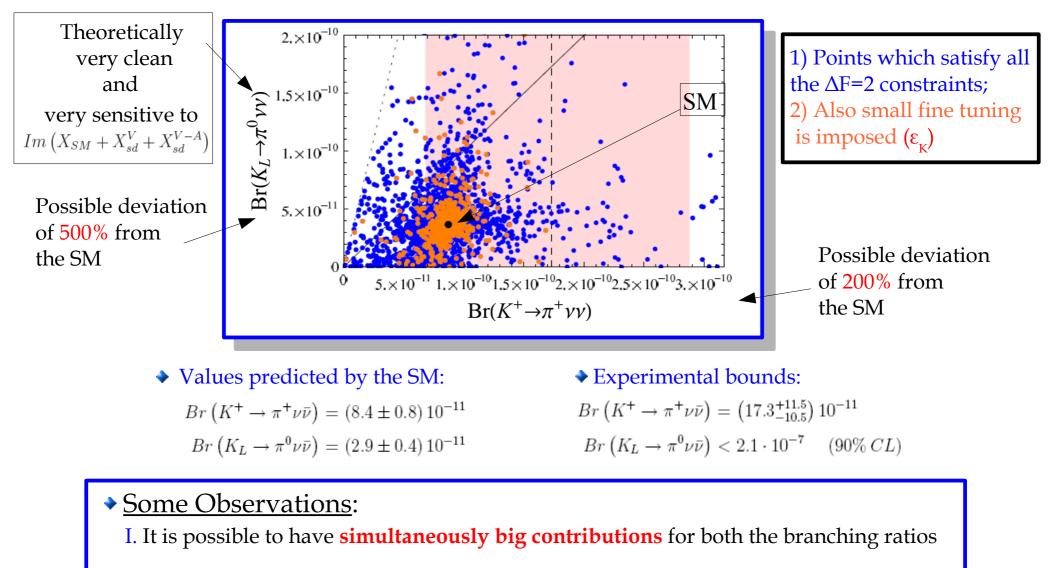
 $\mathcal{H}_{eff}^{tot} \propto V_{tq_1}^* V_{tq_2} \left(X_{SM} + X_{q_1,q_2}^{V-A} \right) \left(\bar{q}_1 \gamma_\mu \left(1 - \gamma_5 \right) q_2 \right) \left(\bar{\nu} \gamma_\mu \left(1 - \gamma_5 \right) \nu \right) + V_{tq_1}^* V_{tq_2} X_{q_1,q_2}^V \left(\bar{q}_1 \gamma_\mu q_2 \right) \left(\bar{\nu} \gamma_\mu \left(1 - \gamma_5 \right) \nu \right)$

$$q_1 \rightarrow q_2 \,\overline{\nu} \,\nu$$

where the new functions:

$$X_{q_1,q_2}^{V-A,V} \propto \frac{1}{\lambda_t^{(q)}} F^{V-A,V} \left(\Delta_L^{\nu\nu}, \Delta_{L,R}^{q_1,q_2} \right)$$

K meson: $\lambda_t^{(q)} = V_{ts}^* V_{td} \approx 4 \cdot 10^{-4}$ B mesons: $\lambda_t^{(q)} = V_{tb}^* V_{tq} \approx 10^{-2}$, q = d, s

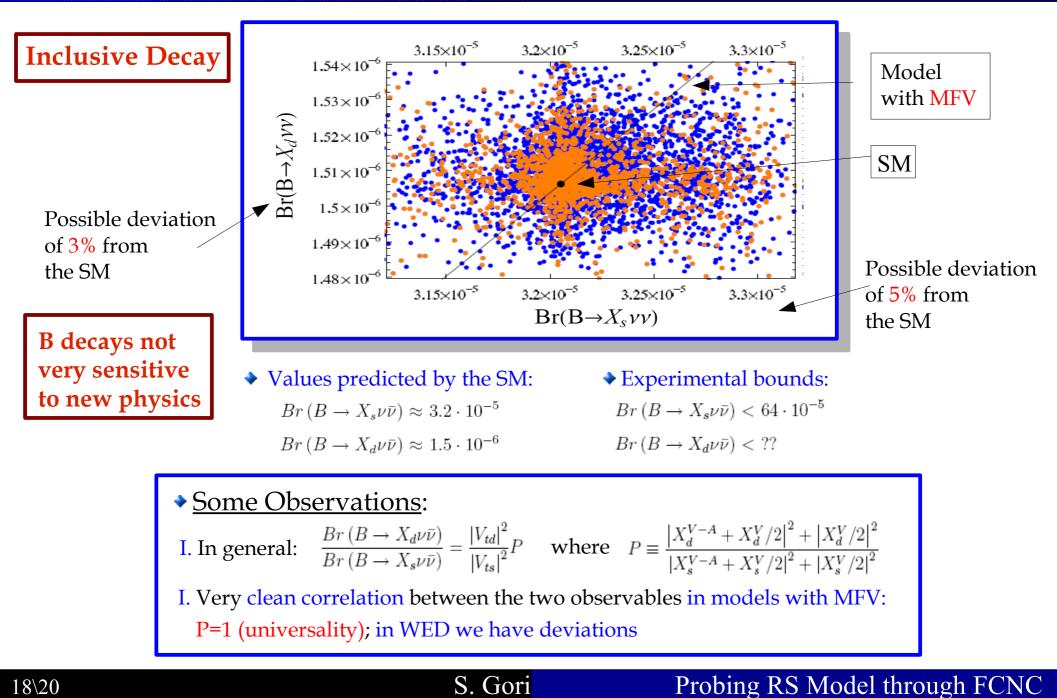

Main Messages:

I. Non universalities

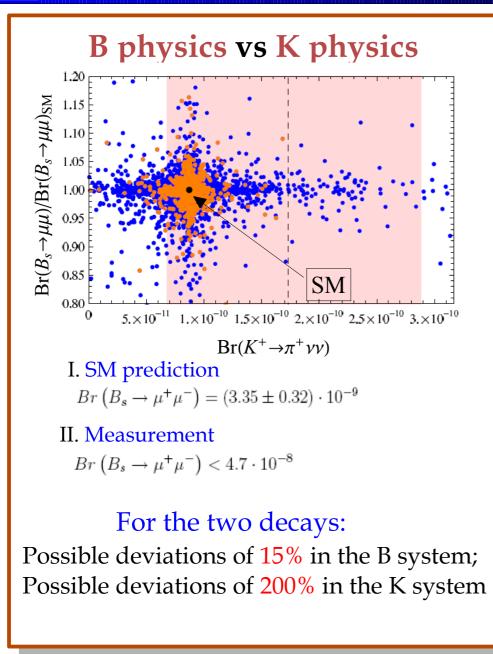
II. <u>Expected</u>: bigger contributions of <u>new physics</u> in the K sector III. X function is now complex → new sources of CP violation

Rare Decays: Numerics

Rare Decays of K mesons...

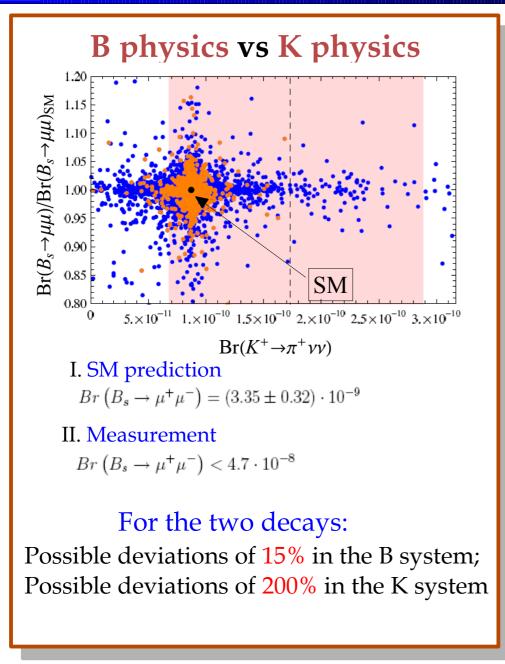


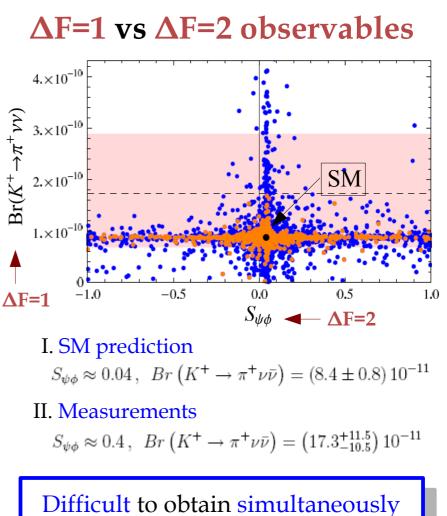
II. The most part of the points stays in the experimental range for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$


Probing RS Model through FCNC

Rare Decays: Numerics

...and Rare Decays of B mesons




Correlations

Rare Decays: Numerics

Correlations

large deviations from the SM for both observables

19\20

S. Gori

Conclusions

Conclusions

Warped Extra Dimension with custodial Protection shows:

Elegant way to address:

I. Flavor Problem II. Gauge-Hierarchy Problem III. ... Testability at LHC since $M_{KK} \approx (2-3) TeV$

In the Flavor Sector:

- I. Existence of regions of parameter space which:
- Fit masses of SM quarks and CKM elements
- Reproduce all the well measured $\Delta F=2$ observables ($\epsilon_{K'} \Delta M_{K'} \Delta M_{d'} \Delta M_{s'} S_{\psi Ks}$)
- Have a small amount of fine tuning on the observables \rightarrow Address the problem with ε_{κ}
- Can predict possible large deviations from the SM of observables not measured yet (S_{uro}, A^s_{SL})

Conclusions

Conclusions

Warped Extra Dimension with custodial Protection shows:

 Elegant way to address: I. Flavor Problem II. Gauge-Hierarchy Problem III 	Testability at LHC since $M_{KK} \approx (2-3) TeV$
 In the Flavor Sector: 	II. Restricting to these regions:
I. Existence of regions of parameter space which:	If future measurements of $\mathbf{S}_{\psi\phi}$ are:
Fit masses of SM quarks and CKM elements	Iarge: Branching ratios of K meson decays are small, SM like
• Reproduce all the well measured $\Delta F=2$ observables ($\epsilon_{K'} \Delta M_{K'} \Delta M_{d'} \Delta M_{s'} S_{\psi Ks}$)	small: Room for large deviations of K
Have a small amount of fine tuning on	meson decays from SM

• Have a small amount of fine tuning on the observables \rightarrow Address the problem with ε_{K}

Can predict possible large deviations from the SM of observables not measured yet (S_{uro}, A^s_{SL}) **In any case B** meson decays can **deviate** only **slightly** from the SM

Predictions of the theory